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Question 1 (4 marks) 

 

a.      y = 3x
2
e
4 x  

   

dy

dx
= 6xe4x + 3x 2 × 4e4 x  (product rule)

= 6xe4x +12x 2e4x
 

 (1 mark) – correct first term 

(1 mark) – correct second term 

 

b.     g(x) =
sin(x)
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(1 mark) 

 

 

 

Question 2 (2 marks) 

 

1

2x − 3
dx =

1

2
loge 2x − 3∫  

Note, because we were asked for ‘an’ antiderivative c is not required (because c could, in this 

case, equal zero) 

 (1 mark) – recognition that a logarithm was required 

 (1 mark) – correct answer 
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Question 3 (2 marks) 
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 (1 mark) 

Now find )(1 xf − . 

        

f (x) =
5

x

Let y =
5

x

 

Swap x and y for inverse. 
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Have shown. 

(1 mark) 
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Question 4 (5 marks) 

 

a. log6(3) −2log6(x) + log6(2) =1 

.1 So

defined) be  to)(log2  term(for the 0but 
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  (1 mark) 

 

b.            8
1−2x = 2

4+x
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(1 mark) 

 

 

 

 

Question 5 (2 marks) 

 

  
2

1

3
sin =







 x
                            ]6,0[ π∈x  

        
4

3
,

43

ππ
=

x
                          ]2,0[

3
π∈

x
 

         
4

9
,

4

3 ππ
=x  

      sin is positive in the 1
st
 and 2

nd
 quadrants 

 

(1 mark) – one correct answer 

(1 mark) – second correct answer 

(1 mark) 

(1 mark) 

(1 mark) 
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Question 6 (5 marks) 

 

a. Pr(X = 0) + Pr(X =1)+ Pr(X = 2) = 0.5  

and, Pr(X = 3) + Pr(X = 4) = 0.5. 

The median of X is therefore halfway between 2 and 3 so the median of X is 2.5 

 (1 mark) 
 

b. Method 1 – using intuition and the table. 
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(1 mark) 

Since we’re told X > 0, then we eliminate Pr(X = 0)  which gives us a denominator of 

0.8. 

We want Pr(X ≤ 2) , so we want )2Pr( and )1Pr( == XX . Remember that Pr(X = 0)  

is eliminated. 

So the numerator is 0.2+0.1= 0.3. 

 

Method 2 – using the conditional probability formula 
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(1 mark) 

This formula is not given on the formula sheet. It is easier to use than the one on the 

formula sheet so therefore worth remembering. 

(1 mark) 

(1 mark) 

(1 mark) 

(1 mark) 
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Question 7 (4 marks) 

 

a. Since f is a probability density function, 

                ∫ =
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(1 mark) 

 

b. The mode of X is the value of x for which f (x)  is a maximum. 

Do a quick sketch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum value of f (x) is 
π
2
 and it occurs when x = 0. 

The mode is zero. 

 (1 mark) 
 

(1 mark) 

(1 mark) 
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Question 8 (6 marks) 

 

a.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 mark) – correct shape 

(1 mark) – correct position  

including endpoints 

 

 

b. i. f (x) = 4 − x 2 +2  

When the graph of f is translated 2 units in the negative direction of the y-

axis, its rule becomes  

 22 4 is,that ,224 xyxy −=−+−=  

When this graph is then translated 2 units in the positive direction of the x-

axis, its rule becomes y = 4 − (x −2)2  

When this graph is then dilated from the y-axis by a factor of 
1

2
, its rule 

becomes  ( )2
2

224)( is,that ,2

2
1

4 −−=












−−= xxh

x
y . 

(1 mark) – for ( )224 −−= xy    

(1 mark) – for ( )2224)( −−= xxh  

 

 

ii. Method 1 – drawing a graph 

  

 To find the domain, do a quick  

 sketch of y = f (x)  after it has  

 undergone the two translations  

 and the dilation to become  

 y = h(x) . 
 

[ ]2,5.0−=hd              (1 mark) 
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Method 2 – using the rule 

f (x) = 4 − x 2 +2   ]7,2[]2,3[ =−= ff rd  from part a. 

 After a translation 2 units in the negative direction of the y-axis, we have:  

     24 xy −=      ]5,0[]27,22[]2,3[ =−−=−= rd  

After a translation 2 units in the positive direction of the x-axis, we have: 

     2)2(4 −−= xy     ]5,0[]4,1[]22,23[ =−=++−= rd  

After a dilation from the y-axis by a factor of 
1

2
, we have: 

( )2224)( −−= xxh   ]5,0[]2,
2

1
[]

2

1
4,

2

1
1[ =−=××−= hh rd  

So 




−= 2,
2

1
hd            (1 mark) 

 

iii. Using either method in part ii., [ ]5,0=hr          (1 mark) 

 

Question 9 (4 marks) 

 

a. 
d

dx
(1− x) loge (x) = −1× loge (x)+ (1− x)×

1

x
        (product rule) 

  
= − loge (x) +

1

x
−
x

x

= − loge (x) + x−1 −1

 

(1 mark) 

b. The area of the shaded region is given by the integral ∫−
1

5.0

)(log dxxe . 

From part a., we have  

d

dx
(1− x) loge (x) = − loge (x) + x−1 −1 

 

Rearrange this. 

− loge (x) =
d

dx
(1− x) loge (x) − x−1 +1 

Finding the antiderivative of each and every term on both sides of the equation gives: 
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 required. as units square )1)5.0((log5.0area So += e  

(1 mark) 
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dxxx
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because the antiderivative ‘undoes’ the derivative. 

(1 mark) 

(1 mark) 
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Question 10 (6 marks) 

a. i.  In ∆CDE, sin(θ) =
DE

CD
 

                          cm  since pDCAB
p

DE
===  

    )sin( So θpDE =          (1 mark) 

ii. In ∆CDE, cos(θ) =
CE

CD
 

    
p
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        )cos( θpCE =           (1 mark) 

b. CDEABCDA ∆−=  ofarea  rectangle ofarea  
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c. rule)(product  ))sin()sin()cos()(cos(
2

2

θθθθ
θ

−×+×−=
p

d

dA
 

      =
−p2

2
(cos

2
(θ) − sin

2
(θ))  

Min occurs when 
dA

dθ
= 0  so  

)(tan1

)(cos

)(sin
1

)(sin)(cos

0   since0)(sin)(cos

0))(sin)((cos
2

2

2

2

22

22

22
2

θ

θ
θ

θθ

θθ

θθ

=

=

=

>=−

=−
−

p

p

 

2
0since possiblenot 

4

 1)tan(or                 1)tan(

π
θ

π
θ

θθ

<<=

−==
 

(1 mark) 

d. From part c., the minimum area occurs when θ =
π
4
.  From part b., 
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