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Worked solutions 
 
 
 
 
 
 

This book presents: 

 worked solutions, giving you a series of points 
to show you how to work through the questions 

 mark allocations 

 tips on how to approach the questions 
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Question 1a. 

Worked solution 

( sin (2 )) sin (2 ) 2 cos (2 )
d

x x x x x
dx

    

 

Mark allocation: 2 marks 

 1 mark for evidence of using the product rule. 
 1 mark for the correct answer. 

 
 
Question 1b. 

Worked solution 

2

( )

1
( )

2
1

(4)
4

x

x

f x e

f x e
x

f e



 

 

 

 

Mark allocation: 2 marks 

 1 mark for the correct derivative ( ).f x  

 1 mark for the correct answer. 
 

Tip 

 Remember to re-read the question before moving on. Many students 
differentiate correctly but then forget to evaluate. 
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Question 1c. 

Worked solution 

Average value of a function is  

 

 

1

1

1
( )

1 1

1 5
1

log 5
1

1
log (5 ) log (4)

1
1 5

log
1 4

1 4
log

1 5

b

a

k

k

e

e e

e

e

f x dx
b a

dx
k x

x
k

k
k

k
k

k k




 

  


   


      
     





  

 

Setting  
1 14

log log (2)
1 25

e ek k
     

 gives 3.k   

 

Mark allocation: 3 marks 

 1 mark for setting up 
1

1 1
.

1 5

k
dx

k x    

 1 mark for recognising  1
1

log 5
1

k

e x
k




 (or equivalent) as the integral. 

 1 mark for answer 3.k   
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Question 2  

Worked solution 

0 4

3 0

4 4
3

3

x x

y y

x
yy x

yx y
x

     
          


 

     

 

Substituting into the equation 2 3 5y x   gives 2 3 5,
4 3

x y
   which 

simplifies to 5 5.
2 2

x x
y y        

 

Mark allocation: 2 marks 

 1 mark for expanding the matrix to get equations for x and y in terms of 
and .y x    

 1 mark for the answer 5
2

x
y     or equivalent versions. 
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Question 3a. 

Worked solution 

  2

2

( ) 4 3

4 3

f g x x x

x x

  

  
 

 

Or    
2

2

4 3, 0
( )

4 3, 0

x x x
f g x

x x x

    
  

  

 

Mark allocation: 1 mark 

 1 mark for the correct answer. 
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Question 3b. 

Worked solution 

Considering  
2

2

4 3, 0
( )

4 3, 0

x x x
f g x

x x x

    
  

 

For 20, ( ) 4 3,x f x x x     so x-intercepts occur at 
2 4 3 0

( 1)( 3) 0

So 1, 3.

x x

x x

x x

  
  
 

 

Turning point at ,  so
2

4
2

2
1

Turning point is (2, 1).

b
x

a

x

y




 

 


 

For 20, ( ) 4 3x f x x x    , so x-intercepts occur at  
2 4 3 0

( 1)( 3) 0

So 1, 3.

x x

x x

x x

  
  
   

 

Turning point at ,  so
2

4
2

2
1

Turning point is ( 2, 1).

b
x

a

x

y





  

 
 
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Mark allocation: 3 marks 

 1 mark for shape of graph showing two parabolic sections and a cusp at 
the y-axis. 

 1 mark for all intercepts labelled correctly. 
 1 mark for labelling the turning points correctly. 

 

Tips 

 To sketch graphs of the form ( ),y f x  first sketch the graph for 

0,x   then reflect the graph in the y-axis and this ‘mirror image’ 

becomes the graph for 0.x   

 Be careful to draw cusps as pointy sections, not as curves. 
 
 
Question 3c. 

Worked solution 

Domain of the derivative is  \ 0 .R  

 

Mark allocation: 1 mark 

 1 mark for the correct answer. 

 

Tips 

 Graphs are never differentiable at cusps. 
 Remember to use a ‘back slash’ or reverse solidus; symbol: \. 
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Question 4a. 

Worked solution 

Range is [–3, 1] and period is . 
 

Mark allocation: 2 marks 

 1 mark for the range. 
 1 mark for the period. 
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Question 4b. 

Worked solution 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To find the x-intercepts, first solve 2sin (2 ) 1 0 :x    
 

2sin (2 ) 1 0

1
sin (2 )

2

2 , 2
6 6

7 11
2 ,

6 6
7 11

,
12 12

x

x

x

x

x

  

 

 

  

 

  





 

 
 
Additional intercepts are found by adding the period of   to both answers. 

This gives x-intercepts of 
7 11 19 23

, , , .
12 12 12 12

   
 

 

Mark allocation: 3 marks 

 1 mark for showing two cycles. 
 1 mark for all x-intercepts labelled correctly. 
 1 mark for both end points labelled correctly. 

 
 
 

-intercept

(0, 1)

y


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Question 4c. 

Worked solution 

This is best done graphically. 
Look to place a horizontal line through the graph and have this line intersect the graph 
in four places. 
It can be observed that this happens when 3 1 1 1.p p          
 

Mark allocation: 1 mark 

 1 mark for the correct answer. 
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Question 5a. 

Worked solution 

Interchange x and y: 

3

3

3log (4 )

log (4 )
3

4

4

e

e

x

x

x y

x
y

e y

y e

 

 

 

 

 

So 1 3( ) 4 .
x

f x e     
 

Mark allocation: 2 marks 

 1 mark for swapping x and y. 
 1 mark for the correct rule. 

 

Tip 

 You must use the correct notation. In this case ‘y =’ is not acceptable; 

the answer must be written with 1f  . 
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Question 5b. 

Worked solution 
1( ( ))  for dom( ( )).f f x x x f x    

So in this case  1( ( )) for ., 4f f x x x     

 
 

Mark allocation: 1 mark 

 1 mark for correctly drawn graph with correct domain. 
 

Tip 

 Always consider the domain of a function. 
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Question 6  

Worked solution 

dV

dh

dt

dV

dt

dh
 ,  where 

dV

dt
  6 cm3/min. 

 

dV

dh
  will need to be found by developing a relationship between h and V. 

 

For a cone, 21
.

3
V r h  

 
For this cone, the following pair of similar triangles apply: 
 

 
 

This gives  
4015

hr
 ,  so 

3
.

8

h
r   

The formula for a cone is 21

3
V r h , so for this cone 

2 31 3 3
.

3 8 64

h h
V h

    
 

 

Therefore, a volume of 24  has a height of  
3

3

3
24

64

8 64

8 cm

h

h

h

 

 


 

So differentiating  
33

64

h
V


   gives  

29

64

dV h

dh


   and  

2

64
.

9

dh

dV h
  

Therefore,  .
dh dV dh

dt dt dV
   

Substituting, this gives  
2

64
6

9

dh

dt h
    

So, at a height of 8 cm,  
64

6
9 64

dh

dt 
 


 

                                             
6 2

9 3 
   cm/min 
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Mark allocation: 3 marks 

 1 mark for setting up the rate equation .
dh dV dh

dt dt dV
   

 1 mark for obtaining 
2

64
.

9

dh

dV h
  

 1 mark for the answer 
2

3
 cm/min. 
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Question 7 

Worked solution 

1

1

0.3 0.6

0.7 0.4

i i

i

i

A B

A

B




 
 
 

 

 
3 3 3 7 189

Pr( , , , , ) 1 0.6 0.3 0.3 0.7
5 10 10 10 5000

B A A A B            

 

Mark allocation: 2 marks 

 1 mark for either writing the transition matrix or for identifying the chain of 
probabilities. 

 1 mark for the correct answer. 
 
 
Question 8a. 

Worked solution 

Note that c will be a value that is one standard deviation above the mean of X.  
So c = 36 + 8 = 44. 
 

Alternatively, using symmetry, 
36

1,
8

c 
  so c = 44. 

 

Mark allocation: 1 mark 

 1 mark for the correct answer. 
 
 
Question 8b. 

Worked solution 

Since 20 is 2 standard deviations below the mean of X, d will be an equivalent value 
that is 2 standard deviations above the mean of Z; so d = 2. 
 

Alternatively, 
36 20

2
8

X
z



 

    

 

Mark allocation: 1 mark 

 1 mark for the correct answer. 
 



17 

Copyright © Insight Publications 2014. 

 
Question 9a. 

Worked solution 
4

0
Let  (2 3) 1.k x dx   

 

4

0

42

0

LHS (2 3)

3

28 0

28

k x dx

k x x

k

k

 

   
 




 

1
So 28 1

28
k k    

 

Mark allocation: 2 marks 

 1 mark for setting up the integral equal to 1 or for using the area of a triangle. 
 1 mark for the correct antiderivative, leading to the correct result of k. 

 
 
Question 9b. 

Worked solution 

 
 

2

0

3

0

22
0
32
0

Pr( 2 3)
Pr( 2 | 3)

Pr( 3)

Pr( 2)

Pr( 3)

1
(2 3)

28
1

(2 3)
28

10 53
18 93

X X
X X

X

X

X

x dx

x dx

x x

x x

  
  












  






 

 

Mark allocation: 2 marks 

 1 mark for setting up a conditional probability. 
 1 mark for the correct answer. 
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Question 10a. 

Worked solution 

(0) ( ) (0) ( )

0 ( )

( ) (0) ( ) (0)

0

AB

BC

f f p f f p
m

p p

f p f f p f
m

p p

   
 

 
 

 


 

 
Let AB BCm m , giving: 

( ) (0) (0) ( )

( ) (0) (0) ( )

( ) ( ) 2 (0)

( ) ( )
(0)

2

f p f f f p

p p

f p f f f p

f p f p f

f p f p
f

  


   
  
 



 

 

Mark allocation: 1 mark 

 1 mark for the correct working, leading to the required answer. 
 
 
Question 10bi. 

Worked solution 

(3) 27 9 3

( 3) 27 9 3

(0)

f b c d

f b c d

f d

    
    


 

 
Using the result from part a gives: 

( ) ( )
(0)

2
27 9 3 27 9 3

2
18 2

2
18 2 2

18 0

0

f p f p
f

b c d b c d
d

b d
d

b d d

b

b

 


       





 



 

 

Mark allocation: 2 marks 

 1 mark for (3), ( 3) and (0).f f f   

 1 mark for correct working, leading to the required result. 
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Question 10bii. 

Worked solution 

When  b = 0, 3 2( ) , so ( ) 3 .f x x cx d f x x c         
 

(3) (0) 27 3
9

3 3AC

f f c d d
m c

    
       

 
Let ( ) .ACf x m   

2

2

So,  9 3

3

3

c x c

x

x

    



 

 

3 gives ( 3) 3 3 3 .

3 gives ( 3) 3 3 3 .

So, the coordinates are ( 3, 3 3 3 ) and ( 3, 3 3 3 ).

x f c d

x f c d

c d c d

    

     

     

 

 

Mark allocation: 3 marks 

 1 mark for finding ( ).f x   

 1 mark for setting ( ) .ACf x m   

 1 mark for the correct coordinates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

END OF WORKED SOLUTIONS BOOK 


