insight_™ YEAR 12 *Trial Exam Paper*

2014

MATHEMATICAL METHODS (CAS)

Written examination 2

Worked solutions

This book presents:

- worked solutions, giving you a series of points to show you how to work through the questions
- ➤ mark allocations
- ➢ tips on how to approach the questions

Copyright © Insight Publications 2014.

This trial examination produced by Insight Publications is NOT an official VCAA paper for the 2014 Mathematical Methods (CAS) Written examination 2.

The Publishers assume no legal liability for the opinions, ideas or statements contained in this Trial Exam.

This examination paper is licensed to be printed, photocopied or placed on the school intranet and used only within the confines of the purchasing school for examining their students. No trial examination or part thereof may be issued or passed on to any other party including other schools, practising or non-practising teachers, tutors, parents, websites or publishing agencies without the written consent of Insight Publications.

2

SECTION 1

Question 1

Answer is D

Worked solution

The range is given by [5-2, 5+2] = [3, 7]. The period is given by $\frac{2\pi}{4\pi} = \frac{1}{2}$.

Question 2

Answer is D.

Worked solution

Using CAS, the range is $(-\infty, 2]$.

To find the range always draw the graph.

Answer is E.

Worked solution

For f(x) to be defined, x > k, so the domain is (k, ∞) . And $\sqrt{x-k} > 0$, so the range is R^+ .

• If it helps, an arbitrary value of k can be chosen and then a graph produced.

Question 4

Answer is D. Worked solution

Using the chain rule for y = g(f(x)), $\frac{dy}{dx} = g'(f(x)) \times f'(x)$. Now $f(x) = \sin(5x)$ and $f'(x) = 5\cos(5x)$, so $\frac{d}{dx} [g(\sin(5x))] = g'(\sin(5x)) \times 5\cos(5x)$.

Answer is B.

Worked solution

The graph is a tan graph with a period of $\frac{\pi}{2}$ that has been shifted to the left $\frac{\pi}{4}$ units. Checking using CAS gives

Answer is A.

Worked solution

f(3) = 27 - 27 = 0f(1) = 1 - 3 = -2

Average rate of change = $\frac{f(3) - f(1)}{3 - 1} = \frac{0 - (-2)}{2} = 1$

Average value of the function is $\frac{1}{3-1}\int_{1}^{3}x^{3}-3x^{2} dx = -3$ (found using CAS).

🜣 Edit Action Interactive 🛛 🖂									
	►	Simp	ſdx /	• ₩	v >				
$\frac{\frac{1}{2}\int_{1}^{3} x^{3} - 3x^{2} dx}{-3}$									
Math1	Line	-	V	π					
Math1 Math2	Line		√■	π	¢				
Math1 Math2 Math3	Line	•••	√∎ In	π i	¢				
Math1 Math2 Math3 Trin			√■ In 0	π i	⇒ ∞ lim				
Math1 Math2 Math3 Trig		e• d	√■ In 	π i ∫	◆ 8 lim				
Math1 Math2 Math3 Trig Var abc	Line IIII IIII Sin		√■ In 	$\frac{\pi}{\int_{-}^{0}}$	 ⇒ ∞ lim ⇒ T t 				
Math1 Math2 Math3 Trig Var abc	Line		√■ In d⊕ [::::] tan	π i Σ Θ ans					

• Be careful! Option E is the answer to the **average value** of the function—this is easily and readily confused.

Answer is A.

Worked solution

For an inverse function to exist, the function f(x) must be one-to-one; i.e. for each x value there is exactly one y value.

The graph of f(x) is

To be one-to-one $x \in [0, \infty)$.

• For the graph to be one-to-one it must pass the horizontal line test.

Answer is D.

Worked solution

Expanding the matrix gives

C Edit Action Interactive										
$ \begin{array}{c c} 0.5 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$										
$\left(\begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} \right)$										
٥	y+z -x+z z									
Math1	Line	-	$\sqrt{\blacksquare}$	π	⇒					
Math2	0	e■	ln	i	90					
Math3		d		1	lim					
Trig	[[]]			Σ□						
Var	sin	cos	tan	θ	t					
	ŧ	E ₁₁	4	ans	EXE					
Alg	Standa	ard	Real	Rad	(11)					

• Ensure the equations are first re-written in the form 0x + 0y + z = 1 -1x + 0y + z = 20x + y + z = 5

Answer is C.

Worked solution

Using CAS gives

Answer is E.

Worked solution

A suitable way to do this question is to choose an arbitrary value for a; e.g. a = 4. A sample graph would be

Owing to the condition that u < t, the gradient is positive for $x \in (-\infty, u) \cup (0, t)$.

Answer is A.

Worked solution

For this approximation h = 0.2, x = 9 and $f'(x) = \frac{3}{2}\sqrt{x}$.

So
$$f(9+h) \approx f(9) + hf'(9)$$

= $\left((9)^{\frac{1}{2}}\right)^3 + 0.2 \times \frac{3}{2}\sqrt{9}$
= $3^3 + 0.2 \times \frac{9}{2} = 27.9$

Question 12

Answer is A.

Worked solution

Rearranging the equation $y = 1 - 2\sin(3x + \pi)$ gives $\frac{y-1}{-2} = \sin\left(3\left(x + \frac{\pi}{3}\right)\right)$. So $y = \frac{y'-1}{-2}$ and $x = 3\left(x' + \frac{\pi}{3}\right)$. Therefore, y' = -2y + 1 and $x' = \frac{x}{3} - \frac{\pi}{3}$.

The expansion of the matrix in option A; i.e. $T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} -\frac{\pi}{3} \\ 1 \end{bmatrix}$, gives

 $x' = \frac{x}{3} - \frac{\pi}{3}$ and y' = -2y + 1, as required.

Answer is E.

Worked solution

$$X \sim \text{Bi}$$

$$E(X) = np = 20$$

$$var(X) = npq = 12 = 20q$$

So $q = \frac{12}{20} = 0.6 \Rightarrow p = 0.4$

$$\therefore n = \frac{20}{0.4} = 50$$

Question 14

Answer is A.

Worked solution

 $\sum \Pr(X = x) = 1 \implies 10a = 1, \therefore a = 0.1$ $E(X) = \sum x \Pr(X = x)$ $= 1 \times 0.2 + 2 \times 0.3 + 3 \times 0.1$ = 1.1

Answer is D.

Worked solution

The transformation represents a reflection in the *y*-axis and a translation of 2 units up. Operating this transformation on the tangent line gives y = 2(-x) - 5 + 2

y = -2x - 3

Question 16

Answer is B.

Worked solution

Using the given information

$$\int_{-4}^{5} f(x) dx = 4$$

$$\Rightarrow F(5) - F(-4) = 4 \qquad (1)$$

So
$$\int_{-1}^{2} (f(3x-1)) dx$$

 $= \frac{1}{3} (F(3(2)-1) - F(3(-1)-1))$
 $= \frac{1}{3} (F(5) - F(-4))$
 $= \frac{1}{3} (4)$ (from equation 1)
 $= \frac{4}{3}$

Answer is C.

Worked solution

Pr(G' | G) = 0.65 and Pr(G' | B) = 0.3

So the matrix is set up as $\begin{bmatrix} \Pr(G' \mid G) & \Pr(G' \mid B) \\ \Pr(B' \mid G) & \Pr(B' \mid B) \end{bmatrix} = \begin{bmatrix} 0.65 & 0.3 \\ 0.35 & 0.7 \end{bmatrix}.$

Question 18

Answer is C. Worked solution $[f(u)]^2 - 2 = (e^x + e^{-x})^2 - 2$

$$[f(u)] = 2 - (e^{-1} + e^{-1}) = 2$$
$$= e^{2x} + 2 + e^{-2x} - 2$$
$$= e^{2x} + e^{-2x}$$
$$= f(2u)$$

Question 19

Answer is E. Worked solution

$$\Pr(X > 71) = \Pr\left(Z > \frac{71 - 50}{7}\right) = \Pr(Z > 3)$$

Using symmetry, Pr(Z > 3) = Pr(Z < -3).

Answer is E.

Worked solution

First, choose a value for θ , say $\theta = \frac{\pi}{6}$.

Using CAS gives

🗢 Edit Action Interactive 🖂										
$ \begin{array}{c c} 0.5 \\ 1 \rightarrow 2 \end{array} & \begin{array}{c c} fdx \\ fdx \end{array} & \begin{array}{c c} Simp \end{array} & \begin{array}{c c} fdx \\ \hline fdx \end{array} & \hline \end{array} & \begin{array}{c c} \hline \end{array} & \hline \end{array} & \begin{array}{c c} Fdx \\ \hline \end{array} & \hline \end{array} & \begin{array}{c c} Fdx \\ \hline \end{array} & \hline \end{array} & \begin{array}{c c} Fdx \\ \end{array} & \begin{array}{c c} Fdx \\ \hline \end{array} & \begin{array}{c c} Fdx \\ \end{array} & \begin{array}{c c} Fdx \\ \end{array} & \end{array} & \begin{array}{c c} Fdx \\ \end{array} & \begin{array}{c c} Fdx \\ \end{array} & \end{array} & \begin{array}{c c} Fdx \\ \end{array} & \end{array} & \begin{array}{c c} Fdx \\ \end{array} & \begin{array}{c c} Fdx \end{array} & \end{array} & \begin{array}{c c} Fdx \\ \end{array} & \end{array} & \begin{array}{c c} Fdx \end{array} & \end{array} & \begin{array}{c c} Fdx \end{array} & \end{array} & \end{array} & \begin{array}{c c} Fdx \end{array} & \end{array} & \begin{array}{c c} Fdx \end{array} & \end{array} & \end{array} & \begin{array}{c c} Fdx \end{array} & \end{array} & \begin{array}{c c} Fdx \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{c c} Fdx \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{c c} Fdx \end{array} & \end{array} $										
-f(3π/	$-f(3\pi/2-\pi/6)$									
				_	√3					
$f(-\pi/2$	2+π/6)								
$f(-3\pi)$	2+7/	6)		_	√3					
	21,77	.,		_	√3					
Math1	Line	-	√∎	π	Þ					
Math2	0	e	ln	log _∎ □	∇					
Math3		X2	X ⁻¹	log ₁₀ ()	solve(
Trig		toDMS	{	{}	()					
var	sin	cos	tan	0	r					
 ▼	+	E	ł	ans	EXE					
Alg	Standa	ard	Real	Rad						

Answer is E.

Worked solution

The graph of $y = -\log_e(x)$ is shown below.

By choosing a value greater than e the x-intercept of the tangent line to the graph is negative, which means that option E is false.

Answer is E.

Worked solution

A graph of the general curve looks like

So for f(x) < 0, then a + b < 0; i.e. a < -b.

• If it helps, choose arbitrary values for a and b to produce a sketch.

SECTION 2

Question 1a.

Worked solution

Mean =
$$\int_{1}^{\infty} \left(x \times \frac{1}{4} e^{\frac{-(x-1)}{4}} \right) dx$$

Using CAS, we get

🗢 Edit Action Interactive 🛛 🖂										
$ \begin{array}{c c} 0.5 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2$										
J1 4	J1 *									
$\int_{1}^{\infty} e^{\frac{-(x-1)}{4}} \cdot x\left(\frac{1}{4}\right) dx$ $\frac{1}{4} \int_{1}^{\infty} (xe^{-(x-1)/4}) dx$										
					5					
Math1	Line	-		π	÷					
Math2	0	e "	ln	i	00					
Math3				1	lim					
Trig	[]	[8]		Σ□	Î					
abc	sin	COS	tan	θ	t					
A V	+	E	4	ans	EXE					
Alg	Standa	ard	Real	Rad	(11)					

This gives the mean of 5 years.

- 1 mark for writing: Mean = $\int_{1}^{\infty} \left(x \times \frac{1}{4} e^{\frac{-(x-1)}{4}} \right) dx.$
- 1 mark for answer of 5 years.

Question 1b.

Worked solution

Median = *m*, such that
$$\int_{1}^{m} \frac{1}{4} e^{\frac{-(x-1)}{4}} dx = 0.5.$$

Using CAS to solve for m gives m = 3.77 years.

Contractive Edit Action Interactive									
$ \stackrel{0.5}{\xrightarrow{1}} 1 \xrightarrow{0} F \stackrel{fdx}{\int} Simp \stackrel{fdx}{\longrightarrow} V \stackrel{\Psi}{\longrightarrow} V $									
solve $\left[\frac{1}{4} \cdot \int_{1}^{m} e^{\frac{x^2 + y^2}{4}} dx = 0.5, \right]$									
solve	$\frac{1}{4} \cdot \begin{cases} m \\ \epsilon \end{cases}$	$\frac{-(x-4)}{4}$	m=4•lı • <u>1)</u> dx	n(2)+ =0.5,	•1}				
solve $\left[\frac{1}{4}\right]_{1}^{e}$ dx=0.5, {m=3.772588722}									
		Math1 Line = /= /							
Math1	Line	-	√∎	π	÷				
Math1 Math2	Line		√∎ ln	π i	¢ 00				
Math1 Math2 Math3		e"	√∎ In	$\frac{\pi}{i}$	⇒ ∞				
Math1 Math2 Math3 Trig	Line 0		√■ In 	π i ∫					
Math1 Math2 Math3 Trig Var abc	Line Line	e d d cos	√ In [] tan	$\frac{\pi}{\int_{-}^{0}}$	 ⇒ ∞ lim ⇒ T t 				
Math1 Math2 Math3 Trig Var abc	Line Line	d d d cos	√■ In d0 10 10 10 10 10 10 10 10 10 1	π i ∫ Ω Θ ans					

- 1 mark for writing $\int_{1}^{m} \frac{1}{4} e^{\frac{-(x-1)}{4}} dx = 0.5.$
- 1 mark for answer of m = 3.77 years.

Question 1c.

Worked solution

$$\operatorname{var}(X) = \operatorname{E}(X^{2}) - (\operatorname{E}(X))^{2}$$
$$= \int_{1}^{\infty} x^{2} f(x) dx - \left(\int_{1}^{\infty} x f(x) dx\right)^{2}$$
$$= \int_{1}^{\infty} x^{2} \frac{1}{4} e^{\frac{-(x-1)}{4}} dx - \left(\int_{1}^{\infty} x \frac{1}{4} e^{\frac{-(x-1)}{4}} dx\right)^{2}$$

Using CAS, this gives var(X) = 16 years.

- 1 mark for stating $\operatorname{var}(X) = \int_{1}^{\infty} x^{2} \frac{1}{4} e^{\frac{-(x-1)}{4}} dx \left(\int_{1}^{\infty} x \frac{1}{4} e^{\frac{-(x-1)}{4}} dx\right)^{2}$.
- 1 mark for answer var(X) = 16 years.

Question 1d.

Worked solution

$$Pr(X > 5) = \int_{5}^{\infty} \frac{1}{4} e^{\frac{-(x-1)}{4}} dx$$
$$= \frac{1}{e}$$
(Found using CAS.)

Using CAS gives

Mark allocation: 2 marks

- 1 mark for stating $\Pr(X > 5) = \int_5^\infty \frac{1}{4} e^{\frac{-(x-1)}{4}} dx.$
- 1 mark for answer $\frac{1}{\rho}$.

• The answer requires an exact answer, so be sure to have your CAS calculator in exact/standard mode. A decimal answer, no matter how accurate, will not be accepted in this instance.

Question 1e.

Worked solution

$$Y \sim \operatorname{Bi}\left(n = 4, \ p = \Pr(X > 5) = \frac{1}{e}\right)$$
$$\operatorname{E}(Y) = n \times p = 4 \times \frac{1}{e} = \frac{4}{e}$$

Mark allocation: 2 marks

- 1 mark for identifying the binomial and the parameters.
- 1 mark for answer $E(Y) = \frac{4}{e}$.

• Although not explicitly asked for, this question also requires an exact answer.

Question 1f.

Worked solution

To be operational, the television requires at least two switches to be working; i.e. $Pr(Y \ge 2)$. Using CAS, this gives $Pr(Y \ge 2) = 0.4687$.

🗢 Edit Action Interactive 🖂
binomialCDf $\left(2, 4, 4, \frac{1}{e}\right)$
0.4686620691
binomialCDf $\left(2, 4, 4, \frac{1}{e}\right)$
0.4686620691
Alg Standard Real Rad 🧰

- 1 mark for stating $Pr(Y \ge 2)$.
- 1 mark for answer 0.4687.

Question 1g.

Worked solution

 $N \sim (n = 12, p = 0.468662)$ Pr(N = 7) = 0.1666 (Found using CAS.)

Using CAS gives

Mark allocation: 2 marks

- 1 mark for recognising the binomial with n = 12 and p = 0.4688.
- 1 mark for answer 0.1666.

• To answer correct to 4 decimal places requires that your calculations be carried out to at least 5 decimal places.

Question 2a.

Worked solution

Let
$$4a\sqrt{x} - x = 0$$
.
So $4a\sqrt{x} = x$
 $16a^2x = x^2$
 $16a^2x - x^2 = 0$
 $x(16a^2 - x) = 0$
 $x = 0$ or $x = 16a^2$
Since $c \neq 0$, $c = 16a^2$.

- 1 mark for setting 4a√x x = 0.
 1 mark for c = 16a².

Question 2b.

Worked solution

 f_a is strictly decreasing for $f'_a \le 0$. Using CAS, we get f'(x) = 0 for $x = 4a^2$. So, it is strictly decreasing for $x \in [4a^2, \infty)$.

C Edit Action Interactive										
0.5 1 1→2 b fdx Simp fdx V V V										
$\frac{d}{dx}(4 \cdot a \cdot \sqrt{x} - x)$										
	<u>2•a-√x</u>									
. (2•a−√3	<u>.</u>	١	vх						
solve	\sqrt{x}	<u> </u>	<)							
			{	x=4•a	2}					
μ					V					
Math1	Line	-	√■	π	¢					
Math1 Math2	Line		√∎ ln	π log_D	→					
Math1 Math2 Math3	Line D [®]	e x ²	√■ In x ⁻¹	π log _m [] log ₁₀ (II)	⇒ √□ solve(
Math1 Math2 Math3 Trig	Line 0	e e x ² toDMS	√■ In x ⁻¹	π log _∎ □ log ₁₀ (Ⅲ) { }	⇒ √□ solve(
Math1 Math2 Math3 Trig Var	Line	e x ² toDMS cos	√■ In x ⁻¹ {■ tan	π log _m [] log ₁₀ (II) { }	⇒ √□ solve(() <i>r</i>					
Math1 Math2 Math3 Trig Var abc	Line	e v ² toDMS cos	√■ ln x ⁻¹ {■ tan	π log _m [] log ₁₀ (II) { } αns	⇒ √□ solve(() r EXE					
Math1 Math2 Math3 Trig Var abc	Line	e x ² toDMS cos	√■ In x ⁻¹ {■ tan	π log _m [] log ₁₀ (II) { } °	⇒ √□ solve(() <i>r</i> EXE					

Mark allocation: 2 marks

- 1 mark for finding $x = 4a^2$.
- 1 mark for $x \in [4a^2, \infty)$.

• For strictly increasing/decreasing conditions, turning points must be included.

Question 2c.

Worked solution

At x = c, $x = 16a^2$ and y = 0 (as determined from part **a**). Using CAS, we get $f'(x) = \frac{2a - \sqrt{x}}{\sqrt{x}}$. At $x = 16a^2$, $f'(16a^2) = \frac{-(4|a| - 2a)}{4|a|}$ $= -\frac{1}{2}$, since a > 0.

So,
$$m = -\frac{1}{2}$$
.

So equation of the tangent line is

$$y - y_1 = m(x - x_1)$$

$$y - 0 = -\frac{1}{2}(x - 16a^2)$$

$$y = -\frac{1}{2}(x - 16a^2)$$

Mark allocation: 3 marks

- 1 mark for finding $m = -\frac{1}{2}$.
- 1 mark for finding *y*-intercept.
- 1 mark for finding tangent line equation.

• The question specifically stated 'show that ...', therefore your working must show step-by-step how you obtained your answer.

Question 2d.

$$y = -\frac{1}{2}(x - 16a^2)$$
$$= -\frac{1}{2}x + 8a^2$$

The tangent line drawn to $f_a(x)$ at x = c passes through the point $(0, 8a^2)$.

So in order for the tangent drawn to $g_a(x)$ to pass through the origin, the graph tangent line must be translated down by $8a^2$, so $b = 8a^2$.

- 1 mark for finding *y*-intercept $(0, 8a^2)$.
- 1 mark for finding $b = 8a^2$.

Question 2e.i.

Worked solution

The area under the curve is given by $\int_{0}^{16a^{2}} 4a\sqrt{x} - x \, dx$. Evaluating this using CAS gives the area is equal to $\frac{128a^{4}}{3}$ square units, since a > 0.

Mark allocation: 2 marks

- 1 mark for setting up the integral.
- 1 mark for the answer $\frac{128a^4}{3}$ square units.

• Make use of the dilation factor and understand what effect this has on the graph and the resulting area.

Question 2e.ii.

Worked solution

 $f\left(\frac{x}{2}\right)$ represents a dilation of factor of 2 parallel to the *x*-axis. This means the area under the curve is doubled, so the area equals $\frac{256a^4}{3}$ square units.

- 1 mark for identifying the transformation correctly.
- 1 mark for the answer $\frac{256a^4}{3}$ square units.

Question 2f.

Worked solution

Find d such that
$$\frac{1}{d} \int_0^d h_a(x) dx = 0$$
; i.e. $\int_0^d h_a(x) dx = 0$, since $d \neq 0$.

Using CAS to solve, gives

C Edit Action Interactive								
Define $f(x)=4 \cdot a \cdot \sqrt{x} - x$								
				de	one			
solve	$\int_{0}^{d} f\left(\frac{x}{2}\right)$)dx=0	D, d)		2.1			
		{d=	0, d=-	<u>512•a</u> 9	<u>-</u> }			
Math1	Line	-	√■	π	Þ			
Math2	0	e■	ln	i	90			
Math3				\int_{0}^{0}	lim			
Trig	[[]]]	[8]	[88]	Σ□	Ī			
Var	sin	COS	tan	θ	t			
	ŧ	E	4	ans	EXE			
Alg	Standa	ard	Real	Rad	(11)			

So
$$d = \frac{512a^2}{9}$$
.

Mark allocation: 2 marks

- 1 mark for setting up $\frac{1}{d} \int_0^d h_a(x) dx = 0.$ 1 mark for the answer $d = \frac{512a^2}{9}.$

31

Question 3a.

- 1 mark for correct shapes and labelling *x*-intercept correctly.
- 1 mark for labelling turning points correctly.

Question 3b.

Worked solution

Firework is extinguished when F = 0.

When
$$F = 0$$
, then
 $\Rightarrow -pt(pt - 24) = 0$
 $\Rightarrow t = 0 \text{ or } pt = 24$
So $t = \frac{24}{p}$.

- 1 mark for setting F = 0.
- 1 mark for the answer $t = \frac{24}{p}$.

Question 3c.i.

Worked solution

Maximum brightness is achieved when F'(x) = 0.

Using CAS gives

Contractive Edit Action Interactive									
$ \stackrel{0.5}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$									
Define $f(x) = \frac{-px(px-24)}{(x+2)^2}$									
d				de	one				
$\frac{d}{dx}$ (f()	c))								
	_(4.	p ² •x+	24•p•	x-48•	<u>р)</u>				
		()	(+2) 3		_				
	(2	2 0	4	40)					
Math1	Line	-	√■	π	Þ				
Math2	0	e■	ln	i	90				
Math3		_d_□	<u>d</u> ∎□	\int_{0}^{0}	lim ∎→□				
Trig	[00]	[8]	[88]	Σ□	Π□				
var ahc	sin	COS	tan	θ	t				
	abc								
Alg	Standa	ard	Real	Rad	(11)				

So the maximum brightness will occur when $\frac{-(4p^2t + 24pt - 48p)}{(t+2)^3} = 0.$

- 1 mark for finding the derivative.
- 1 mark for setting it equal to zero.

35

Question 3c.ii.

				$\textcircled{black}{l}$ Edit	Actio ► J ^{dx} Jdx∓	n Inter Simp	factive fax	• [₩ -48•p)	× • •		
$\frac{-(4 \cdot p^{2} \cdot x + 24 \cdot p \cdot x - 48 \cdot p)}{(x+2)^{3}}$ solve $(-(4 \cdot p^{2} \cdot x + 24 \cdot p \cdot x - 48 \cdot p))$ $\left\{x = \frac{48 \cdot p}{4 \cdot p^{2} + 24 \cdot p}\right\}$				simplif;	y(<u>4</u> •p	{> 48•p 2 ₊₂₄ •	$x = \frac{4}{4 \cdot p^2}$	18•p 2+24• 	$\left[\frac{12}{+6}\right]$		
Math1	Line	-	$\sqrt{\blacksquare}$	π	÷	Math1	Line	-	$\sqrt{\blacksquare}$	π	÷
Math2	0	e■	ln	i	90	Math2	0	e■	ln	i	90
Math3		d∎□		<i>f</i>	lim ∎≯□	Math3		d∎□		$\int_{-\infty}^{\infty}$	lim ∎→□
Trig	[[]]	[8]	[88]	Σ□	Π□	Trig	[[]]]	[8]	[88]	Σ□	Π□
ahc	sin	COS	tan	θ	t	var ahr	sin	COS	tan	θ	t
	abc						+	Ē	4	ans	EXE
Alg	Standa	ard	Real	Rad	(11)	Alg	Standa	ard	Real	Rad	(III)

So the maximum occurs when
$$t = \frac{12}{p+6}$$
.

- 1 mark for finding t in terms of p.
 1 mark for simplifying to get t = 12/(p+6).

Question 3d.

Worked solution

Maximum brightness is at $x = \frac{12}{p+6}$ and $F\left(\frac{12}{p+6}\right) = \frac{36p}{p+12}$, which was found using CAS.

- 1 mark for finding $F\left(\frac{12}{p+6}\right)$.
- 1 mark for the answer $\frac{36p}{p+12}$.

Question 3e.

Worked solution

For
$$F \le 11$$
, equation becomes $\frac{36p}{p+12} \le 11$.

Using CAS to find this value of p gives

So the value of *K* is $\frac{132}{25} = 5.28$.

- 1 mark for setting $\frac{36p}{p+12} \le 11$. 1 mark for the answer $\frac{132}{25}$ or 5.28.

Question 3f.

Worked solution

Maximum brightness occurs at $t = \frac{12}{p+6}$.

We want $t \le 1.5$, so equation becomes $\frac{12}{p+6} \le 1.5$.

Edit Action Interactive × 0.5 1 /b fdx Simp fdx V V > 0.5 1 /b fdx Simp fdx V V >										
solve $\left(\frac{1}{2}\right)$	solve $\left(\frac{36 \cdot p}{p+12} \le 11, p\right)$									
solve ($\left\{-12 solve \left(\frac{12}{p+6} \le 1.5, p\right)\{p < -6, 2 \le p\}$									
Math1	Line	름	V	π	¢					
Math2	Define	f	g	i	90					
Math3	solve(dSlv	,	{ 8 ;8	Τ					
Trig	<	>	()	{ }	[]					
Var $\leq \geq = \neq \angle$										
ahe	-									
abc	+	Ē _b	9	ans	EXE					

So the values for *p* that satisfy the conditions are $2 \le p \le 5.28$.

- 1 mark for finding $p \ge 2$.
- 1 mark for $2 \le p \le 5.28$.

Question 4a.

Worked solution

The *x*-intercepts of the graph are at (0, 0) and (2, 0). These are found when y = 0. Setting y = 0 gives

$$\frac{\pi x}{4} \cos(nx) = 0$$

$$\Rightarrow \frac{\pi x}{4} = 0 \text{ or } \cos(nx) = 0$$

$$\Rightarrow x = 0 \text{ or } nx = \frac{\pi}{2}$$

So when $x = 2 \Rightarrow 2n = \frac{\pi}{2}$.

$$\therefore n = \frac{\pi}{4}$$

- 1 mark for setting $\frac{\pi x}{4}\cos(nx) = 0$.
- 1 mark for correctly simplifying to give $n = \frac{\pi}{4}$.

Question 4b.

Worked solution

Using CAS, the second *x*-intercept occurs at (6, 0); so b = 6.

Mark allocation: 1 mark

• 1 mark for the correct answer.

- 1 mark for shape passing through (0, 4) and (2, 4).
- 1 mark for labelling endpoints correctly.
- 1 mark for labelling turning point correctly.

Question 4c.ii.

Worked solution

Using CAS, at
$$x = 1$$
, $y = \frac{-\sqrt{2}\pi}{8} + 4$.

C Edit Action Interactive										
	►	Simp	<u>fdx</u>	• [₩	v >					
Define	Define $f(x)=4-\frac{\pi x}{4}\cos(\frac{\pi x}{4})$									
f(1)	4 4 done									
٥			-	8	+4					
Math1	Line	-	1	π	•					
Math2	cin	-	v =							
Martho	sin	cos	tan	l	~~~					
Matha	sin ⁻¹	\cos^{-1}	tan-1	θ	t					
Trig	sinh	cosh	tanh	0	r					
Var	sinh-1	cosh ⁻¹	tanh=1	D						
abc	Sim	e o an	- ann							
A 7	+	E	-	ans	EXE					
Alg	Standa	ard	Real	Rad	(11)					

Mark allocation: 1 mark

•

• 1 mark for the correct answer.

Note that an exact value is required here.

Question 4c.iii.

Worked solution

Use CAS to find when f(x) = 6.

🗢 Edit Action Interactive 🛛 🖂									
0.5 1 ➡2	► [fdx Jdx	Simp	<u>fdx</u>	• ₩	v >				
Dettile	1(X)-	4 4	COST-	4'					
done									
f(1)									
$-\sqrt{2} \cdot \pi$									
$\frac{-\sqrt{2} \cdot \pi}{8} + 4$									
solve (f	(x)=8	3, x)							
4.157	■ 1579001, x=3. 18151465, x								
Math1	Line	-	V	π	¢				
Math2	sin	cos	tan	i	90				
Math3	sin ⁻¹	cos ⁻¹	tan-1	θ	t				
Trig	einh	oogh	tanh	0	r				
Var	smin	COSII	tann						
abc	sinh ⁻¹ cosh ⁻¹ tanh ⁻¹								
A V	+	Pa	4	ans	EXE				
Alg	Standa	ard	Real	Rad	(11)				

So $f(x) \ge 6$ for $3.1815 \le x \le 4.3$, so for 1.119 km.

- 1 mark for finding the points and intersection.
- 1 mark for the correct answer 1.119.

- Be careful of the endpoint! The graph stops at x = 4.3, so the upper endpoint of the interval is 4.3.
- To give an answer that is correct to 3 decimal places requires that your working be done to at least 4 decimal places.

Question 4d.i.

Worked solution

Use CAS to find p for when $\frac{d}{dx}\left(4 - \frac{\pi x}{4}\cos(px)\right) = 0$ with $x = 1$.													
Contraction Contractive 0.5 1 0.5 1 1.5 <								t Action ► [fdx]	n Inter Simp	factive	•[+	×	
■2888, x=-1. 095410747, x=					solve $\left(\frac{d}{dx}(f(x))=0,x\right)$								
Define $f(x)=4-\frac{d}{4}\cos(px)$ done					p•x•tar	1(p•x)	{p•x•t -1=0	an(p• x=1 p•tan	x)-1= (p)-1	=0			
$[p \cdot x \cdot tan(p \cdot x) - 1 = 0]$						solve (1	o•tan(] 3589,	p)-1= p=0.4	:0,p) 86033	33589,	·Þ		
Math1	a	b	с	d	e	f		Math1	Line	-	$\sqrt{\blacksquare}$	π	Þ
Math2	8	h	i	j	k	l		Math2	Define	f	g	i	90
Math3	m	n	0	р	q	r		Math3	solve(dSlv	,	{8;8	Ι
Trig	s	t	и	v	w	x		Trig	<	>	()	{}	[]
var	У	z				CAPS		var	≤	≥	=	#	2
	+	Pa	1 9	b	ans	EXE			+	E	4	ans	EXE
Alg	Stand	lard	Rea	al I	Rad	(11)		Alg	Standa	ard	Real	Rad	(11)

Although this gives a number of values for p, p = 0.8603 gives the correct outcome. This can be verified by checking the graph $y = 4 - \frac{\pi x}{4} \cos(px)$ with p = 0.8603.

🜣 Edit Zoom Analysis 🔶 🛛 🗙								
Sheet1 Sheet2 Sheet3 Sheet4 Sheet5								
y1:0								
y2:0								
$\mathbf{V} \mathbf{y} 3 = 4 - \frac{\pi \cdot \mathbf{x}}{4} \cdot \cos\left(0.8603 \cdot \mathbf{b}\right)$								
y4:0								
y5:D								
y6:0								
Ø3=4−π	x/4·cos	(0.860	3•x)					
\$ ³ =4−π	x/4•cos	(0.860	3•x)					
\$ ³ =4−π	·x/4·cos	(0.860	3•x)					
y3=4−π	•x/4•cos	(0.860	3•x)					
§3=4−π	×/4•cos	(0.860)	3•x)					
y ³ =4−π	x/4·cos	(0.860) ,	3•x)					
y ³ =4-π·	x/4·cos	(0.860)) yc=3.	3•x) 487755	Min 54 ×				
×c=1.00	x/4·cos P _{(1,3.4878} 0039	(0.860)) yc=3.	3•x) 487755	Min 54 ×				

- 1 mark for setting $\frac{d}{dx} \left(4 \frac{\pi x}{4} \cos(px) \right) = 0$ with x = 1.
- 1 mark for the answer p = 0.8603.

Question 4d.ii.

Worked solution

For the maximum to occur at the endpoint, this requires that the maximum turning point occurs at $x \ge 4.3$ and that f(4.3) > f(0) = 4.

Use CAS to find p such that $\frac{d}{dx}\left(4 - \frac{\pi x}{4}\cos(px)\right) = 0$ with x = 4.3.

This gives a number of values for *p*. Verifying the correct value for *p* by checking the graph gives p = 0.7966. (Note: The value 0.7967 gives a turning point just before the endpoint.)

Using CAS to solve	f(4.3) > 4 for p	gives	p > 0.3653.
--------------------	------------------	-------	-------------

So for the maximum to occur at x = 4.3, then 0.3653 .

Mark allocation: 4 marks

- 1 mark for setting $\frac{d}{dx} \left(4 \frac{\pi x}{4} \cos(px) \right) = 0$ with x = 4.3.
- 1 mark for p < 0.7966.
- 1 mark for f(4.3) > 4.
- 1 mark for 0.3653 .

• Don't assume that the normal rules for rounding apply. Always check your answer by sketching a graph and seeing whether it complies with the requirements. In this case, a 'rounded down' answer of 0.7966 was required.

END OF WORKED SOLUTIONS BOOK