MATHEMATICAL METHODS

Units 3 & 4 – Written examination 2

(TSSM's 2014 trial exam updated for the current study design)

SOLUTIONS

SECTION 1: Multiple-choice questions (1 mark each)

Question 1

Answer: B

Explanation:

Period is: $\frac{\pi}{\pi/3} = 3$

Question 2

Answer: A

Explanation:

The domain of f(x) + g(x) is given by dom of $f \cap dom$ of g

Question 3

Answer: C

Explanation:

$$d^{2} = \left(\sqrt{(2a - a)^{2} + (2b + b)^{2}}\right)^{2} = a^{2} + 9b^{2}$$

Question 4

Answer: E

Explanation:

$$-1 + a - 41 + 56 = 0$$

 $a = -14$

Question 5

Answer: D

Explanation:

The domain of the inverse is the range of the function = $(-\infty, 3)$

$$x = 3 - e^{y}$$

$$e^y = 3 - x$$
 which implies $y = \log_e(3 - x)$

Question 6

Answer: C

Explanation:

$$\frac{1}{3-1/2}\int_{1/2}^{3} 2\sin\left(x - \frac{3\pi}{4}\right) dx$$

Question 7

Answer: C

Explanation:

Draw the probability table and use $Pr(A \cap B) = Pr(A) \times Pr(B)$ to find the value of p.

Question 8

Answer: A

Explanation:

$$y - 2e^{a+2} = 2e^{a+2}(x-a)$$

Solve: $-2e^{a+2} = 2e^{a+2}(-a)$ for a

Question 9

Answer: C

Explanation:

$$kx^2 - 5x = x - 3$$

 $\Delta = 0$ implies $k = 3$

Question 10

Answer: D

Explanation:

Chain rule. First differentiate f, then cos, then g

Question 11

Answer: B

Explanation:

Shaded Area = Area of rectangle - Area under the curve Shaded Area =
$$3 \times 9 - \int_2^{11} \sqrt{x-2} \ dx$$

Question 12

Answer: A

Explanation:

For f(g(x)) to be defined (Range of g) should be a subset of (domain of f)

Question 13

Answer: C

Explanation:

Use matrix transformations to get $y - 1 = (-x + 4 - 1)^2$

© TSSM 2014 Page 3 of 10

Question 14

Answer: E

Explanation:

$$Pr(X < 90) = Pr\left(Z < \frac{-30}{\sigma}\right)$$
$$\frac{-30}{\sigma} = invnorm\left(\frac{3}{40}, 0, 1\right)$$

Question 15

Answer: A

Explanation:

$$M = 1.96 \times \sqrt{\frac{0.2 \times 0.8}{50}}$$
$$= 0.11$$

Question 16

Answer: B

Explanation:

solve $\left(\frac{d}{dx}(5e^x\sin(x)) = 0\right)$ for x and choose the second value of x.

Question 17

Answer: E

Explanation:

$$0 = (1+a)^2 \text{ implies } a = -1$$
$$f(x) = \frac{(x-1)^3}{3} + c$$

Question 18

Answer: B

Explanation:

\hat{p}	0	1	1	3	1
-		$\frac{\overline{4}}{4}$	$\overline{2}$	$\frac{\overline{4}}{4}$	
$\Pr\left(\hat{P}=\hat{p}\right)$	0.4096	0.4096	0.1536	0.0256	0.0016

$$\frac{Pr(0<\hat{p}<0.8)}{Pr(\hat{p}<0.8)} = \frac{0.5888}{0.9984} = 0.590$$

Question 19

Answer: A

Explanation:

As the graph of the function passes through 3, its gradient changes from negative to positive hence a point of minimum.

Question 20

Answer: C

Explanation:

$$X \sim Bi(5,0.2)$$

 $Pr(X = 3) = {5 \choose 3} (0.2)^3 (0.8)^2$

Question 21

Answer: E

Explanation:

$$1(f(3) + f(4) + f(5))$$

Question 22

Answer: A

Explanation:

$$\frac{f(3)-f(1)}{3-1}=7$$

Solve for *a*.

SECTION 2: Analysis Questions

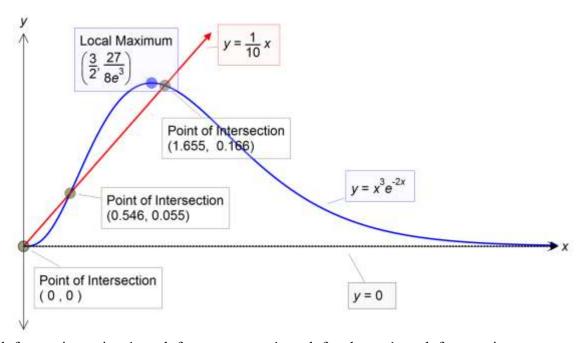
Question 1

a.
$$f(x) = x^3 e^{-2x}$$

 $f'(x) = -2x^3 e^{-2x} + 3x^2 e^{-2x}$
 $f'(x) = x^2 e^{-2x} (3 - 2x)$
 $a = 2$ and $b = -2$

M1+A2 3 marks

b.
$$f(0) = 0$$
 $(0,0)$


A1 1 mark

c.
$$f'(x) = 0 \rightarrow x^2 e^{-2x} (3 - 2x) = 0$$
$$x = 0, \ x = \frac{3}{2}$$

Stationary points are (0,0) and $(\frac{3}{2}, \frac{27}{8e^3})$

M1+A2 3 marks

d.

1 mark for turning point, 1 mark for asymptote, 1 mark for shape, 1 mark for axes intercepts
4 marks

© TSSM 2014 Page 6 of 10

e. See the graph above.

1 mark for sketching the line, 1 mark for the intersection points correct to 3 dp.

2 marks

f.

$$Area = \int_0^{0.546} \left(\frac{1}{10}x - x^3 e^{-2x}\right) dx + \int_{0.546}^{1.655} \left(x^3 e^{-2x} - \frac{1}{10}x\right) dx$$

$$Area = 0.0322 \ sq \ units$$

M2+A1

3 marks

Question 2

a.
$$Max d(t) = 6m$$

 $6 = 4 + 2sin\left(\frac{\pi(t+2)}{6}\right)$
 $t = 1, 13$
At 10.00am and 10.00pm

M1+A2

3 mar

ks

b. Period =
$$\frac{2\pi}{\pi/6}$$
 = 12*hours*

A1

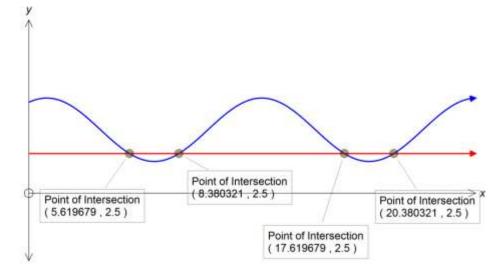
1 mark

c.
$$3.6 = 4 + 2sin\left(\frac{\pi(t+2)}{6}\right)$$

 $t = 4.38457, 9.61543, 16.3846, 21.6154$
At 6: 37pm

M2+A1

3 marks


d.
$$2 = 4 + 2sin\left(\frac{\pi(t+2)}{6}\right)$$
$$t = 7, 19$$
$$At 4pm \ and \ 4am \ (next \ day)$$

A2

2 marks

© TSSM 2014

e.
$$4 + 2sin\left(\frac{\pi(t+2)}{6}\right) \le 2.5$$

Between 2:37pm and 5:23pm

M2+A2 4 marks

Question 3

a. $(-1,\infty)$

1 mark

b. Translate by - 1 unit along the x - axisReflect the graph across the x - axisTranslate by + 2 units along the y - axis

A3

3 marks

c.
$$let y = 2 - log_e(x + 1)$$

 $x = 2 - log_e(y + 1)$
 $log_e(y + 1) = 2 - x$
 $f^{-1}(x) = e^{2-x} - 1$
Domain of f^{-1} is R

M2+A2 4 marks

© TSSM 2014 Page 8 of 10

d.
$$2 - log_e(x+1) = x$$
 (1.2079, 1.2079)

M1+A1

2 marks

e.
$$\frac{d}{dx}(2 - \log_e(x+1)) = \frac{-1}{x+1}$$

 $m = \frac{-1}{5}$

M1+A1

2 marks

f.
$$(4, 2 - log_e 5)$$

 $y - (2 - log_e 5) = 5(x - 4)$
 $y = 5x - 18 - log_e 5$

M2+A1

3 marks

Question 4

a.
$$0.85^5 = 0.4437$$

M1+A1

2 marks

b.
$$5 \times 0.15 \times 0.85^4 = 0.3915$$

M1+A1

2 marks

c.
$$1 - 0.15^{\circ} \times 0.85^{\circ} = 0.5563$$

M1+A1

2 marks

d. Let
$$X \sim Bi(115,0.15)$$

Pr $(15 \le X \le 20) = 0.5520$
(on CAS use $binomcdf(110, 0.15, 15, 20)$)

M2+A1

3 marks

e. Let $Y \sim N(20700, 2915^2)$ Pr(Y > 21000) = 0.4590(on CAS use $normcdf(21000, \infty, 20700, 2915))$

M2+A1

3 marks

f. Pr(18000 < Y < 25000) = 0.7528 (on CAS use normcdf(18000,25000,20700,2915))

M1+A1 2 marks

© TSSM 2014 Page 10 of 10