

### **2014 Trial Examination**

|                                          | 1  |
|------------------------------------------|----|
|                                          | 1  |
|                                          |    |
|                                          | !  |
| THIS BOX IS FOR ILLUSTRATIVE PURPOSES ON | LY |
|                                          |    |
|                                          | I  |
|                                          | 1  |
|                                          | 1  |

|         | STUDENT NUMBER |  |  |  |  | Letter |  |  |
|---------|----------------|--|--|--|--|--------|--|--|
| Figures |                |  |  |  |  |        |  |  |
| Words   |                |  |  |  |  |        |  |  |

# MATHEMATICAL METHODS (CAS)

### Units 3 & 4 – Written examination 2

Reading time: 15 minutes Writing time: 2 hours

### **QUESTION & ANSWER BOOK**

#### Structure of book

| Section | Number of questions | Number of questions to be answered | Number of<br>marks |  |  |  |  |
|---------|---------------------|------------------------------------|--------------------|--|--|--|--|
| 1       | 22                  | 22                                 | 22                 |  |  |  |  |
| 2       | 5                   | 5                                  | 58                 |  |  |  |  |
|         |                     |                                    | Total 80           |  |  |  |  |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set-squares, aids for curve sketching, one bound reference, one approved CAS calculator (memory DOES NOT need to be cleared) and, if desired, one scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

#### Materials supplied

• Question and answer book of 17 pages including answer sheet for multiple-choice questions.

#### **Instructions**

- Print your name in the space provided on the top of this page and the multiple-choice answer sheet.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the examination room.

© TSSM 2014 Page 1 of 17

### **SECTION 1 – Multiple-choice questions**

#### **Instructions for Section 1**

Answer all questions on the answer sheet provided for multiple choice questions.

Choose the response that is **correct** for the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

### **Question 1**

The function with the rule  $f(x) = -\frac{1}{2} \tan \left( \frac{\pi}{3} x \right)$  has period:

- **A.**  $\frac{1}{3}$
- **B.** 3
- **C.**  $3\pi$
- **D.**  $\frac{\pi}{3}$
- **E.** 6

### **Question 2**

If the function  $f:(-\infty,3) \to R$ ,  $f(x) = log_e(3-x)$  and  $g:[-3,\infty) \to R$ ,  $g(x) = -\sqrt{x+3}$  then the maximal domain of the function f(x) + g(x) is:

- **A.** [-3,3)
- **B.** (-3,3)
- C.  $(-\infty,3)$
- **D.** [-3, ∞)
- **E.**  $(-\infty,\infty)$

## **Ouestion 3**

The square of the distance between the two points (a, -b) and (2a, 2b) is given by:

- **A.**  $\sqrt{9a^2 + b^2}$
- **B.**  $\sqrt{a^2 + 9b^2}$
- C.  $a^2 + 9b^2$
- **D.**  $9a^2 + b^2$
- **E.**  $9a^2 b^2$

### **Question 4**

If the equation  $x^3 + ax^2 + 41x + 56 = 0$  has a solution x = -1, then the value of a is:

- **A.** 14
- **B.**  $\pm 14$
- **C.** 16
- **D.** −16
- **E.** -14

#### **Question 5**

The inverse of the function  $f: R \to R$ ,  $f(x) = 3 - e^x$  is given by:

- **A.**  $f^{-1}: R \to R, f^{-1}(x) = log_e(x-3)$
- **B.**  $f^{-1}: R \to R, f^{-1}(x) = log_e(3-x)$
- C.  $f^{-1}:(3,\infty)\to R, f^{-1}(x)=\log_e(x-3)$
- **D.**  $f^{-1}: (-\infty, 3) \to R, f^{-1}(x) = log_e(3 x)$
- **E.**  $f^{-1}: R \to R, f^{-1}(x) = -log_e(x-3)$

#### **Question 6**

The average value of the function  $f(x) = 2\sin\left(x - \frac{3\pi}{4}\right)$  over the interval  $\left[\frac{1}{2}, 3\right]$  is closest to:

- **A.** -2.16
- **B.** 2.16
- $\mathbf{C.} -0.87$
- **D.** 0.87
- **E.** -0.22

**SECTION 1** – continued

**TURN OVER** 

### **Question 7**

For independent events A and B,  $Pr(A \cap B) = p$ ,  $Pr(A' \cap B') = Pr(A \cap B') = p + \frac{1}{4}$  then the value of p is:

- **A.** 0
- **B.**  $\frac{1}{4}$
- C.  $\frac{1}{8}$
- **D.**  $\frac{1}{2}$
- **E.**  $\frac{3}{8}$

### **Question 8**

If the tangent to the graph of  $f(x) = 2e^{x+2}$  at x = a passes through the origin, then a equals:

- **A.** 1
- **B.** 0
- C. -2
- **D.** 2
- **E.** 3

#### **Question 9**

The graph of  $y = kx^2 - 5x$  intersects the graph of x - y - 3 = 0 at one point. The value of k is:

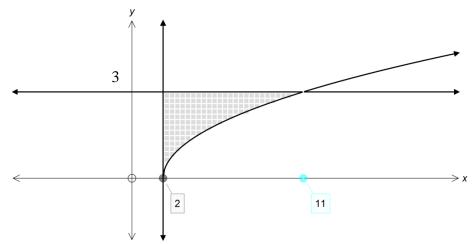
- **A.**  $\frac{1}{3}$
- **B.** −3
- **C.** 3
- **D.**  $\frac{4}{3}$
- E.  $\frac{3}{4}$

#### **Question 10**

Let  $f: R \to R$  be a differentiable function. The derivative of  $f(\cos(g(x)))$  is:

**A.** 
$$f'(\cos(g(x))) \times -\sin(g(x))$$

**B.** 
$$f'(\cos(g(x))) \times -\sin(g'(x))$$


C. 
$$f'(-\sin(g'(x)))$$

**D.** 
$$f'(\cos(g(x))) \times -\sin(g(x)) \times g'(x)$$

**E.** 
$$f'(\cos(g(x)))$$

#### **Question 11**

The graph of the function  $f: [2, 11] \to R$ ,  $f(x) = \sqrt{x-2}$  is shown below:



Which one of the following definite integrals could be used to find the area of the shaded region?

**A.** 
$$\int_{2}^{11} \sqrt{x-2} \ dx$$

**B.** 
$$27 - \int_2^{11} \sqrt{x-2} \ dx$$

C. 
$$33 - \int_{2}^{11} \sqrt{x-2} \ dx$$

**D.** 
$$27 - \int_0^3 (x^2 + 2) \ dx$$

**E.** 
$$33 - \int_0^3 (x^2 + 2) \ dx$$

**SECTION 1** – continued

**TURN OVER** 

© TSSM 2014 Page 5 of 17

### **Question 12**

If  $g(x) = x^3 + 1$  and  $f(x) = \sqrt{2 - x}$  then the largest possible range of g for which f(g(x)) is defined is:

- A.  $(-\infty, 2]$
- **B.**  $[-2, \infty)$
- C.  $(-1, \infty)$
- **D.**  $R^{+}$
- **E.** [0, 2]

### **Ouestion 13**

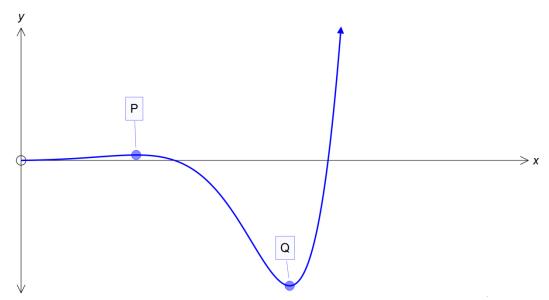
A transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$ ,  $T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 4 \\ -1 \end{bmatrix}$  maps the graph of a function f to the graph of  $y = (x - 1)^2$ ,  $x \in \mathbb{R}$ . The rule of f is:

- **A.**  $y = (x-3)^2 1$
- **B.**  $y = -(x-3)^2 1$
- C.  $y = (x-3)^2 + 1$
- **D.**  $y = -(x-3)^2 + 1$
- **E.**  $y = x^2 4$

### **Question 14**

A random variable *X* is normally distributed with mean 120 and standard deviation of  $\sigma$ . If  $Pr(X < 90) = \frac{3}{40}$ , the value of  $\sigma$  is:

- **A.** 7
- **B.** 13
- **C.** 17
- **D.** 18
- **E.** 21


### **Question 15**

Which of the following functions satisfies f(2x) = 2f(x) for all values of x?

- **A.**  $f(x) = 2x^2$
- **B.**  $f(x) = \sqrt{2x}$
- **C.** f(x) = 2x
- **D.** f(x) = x + 2
- $\mathbf{E.} \ f(x) = \frac{1}{2} log_e x$

### **Question 16**

Part of the graph of the function  $f:(0,\infty)\to R$ ,  $f(x)=5e^x\sin(x)$  is shown in the diagram below.



The first two turning points are labelled as P and Q. The x-coordinate of the point Q is:

- A.  $\frac{\pi}{4}$
- $\mathbf{B.} \quad \frac{7\pi}{4}$
- C.  $\frac{9\pi}{4}$
- **D.**  $\frac{5\pi}{6}$
- E.  $\pi$

#### **Question 17**

If  $f'(x) = (x + a)^2$ , where a is a real constant, and f'(1) = 0 then f(x) is equal to:

- **A.**  $(x-1)^3$
- **B.**  $\frac{(x)^3}{3} + 1$
- C.  $\frac{(x+1)^3}{3}$
- **D.**  $\frac{(x+1)^3}{3} 1$
- **E.**  $\frac{(x-1)^3}{3}$

#### **Question 18**

Using Euler's rule for approximation, the best approximation for  $\sqrt{109}$  is given by:

- **A.** f(10) + 9f'(10)
- **B.** f(100) + 9f'(100)
- C. f(121) 12f'(121)
- **D.** f(11) 12f'(11)
- **E.** f(100 9f'(100))

#### **Question 19**

Let  $f: R \to R$  be a function such that f'(3) = 0 and f'(x) > 0 when x > 3, and f'(x) < 0, when x < 3. The graph of f at x = 3 has a:

- A. local minimum
- **B.** local maximum
- C. staionary point of inflection
- **D.** point of discontinuity
- **E.** gradient 3

#### **Question 20**

The probability of hitting a target with any particular arrow is 0.8. If 5 arrows are shot, the probability that 3 targets are missed can be best represented by:

- **A.**  $(0.2)^3$
- **B.**  $C(5,3)(0.8)^3(0.2)^2$
- C.  $C(5,3)(0.2)^3(0.8)^2$
- **D.**  $(0.2)^3(0.8)^2$
- **E.**  $(0.8)^3(0.2)$

### **Question 21**

Using the right rectangle approximation with rectangles of width 1, the area bounded by the curve  $y = \frac{1}{x}$ , the x-axis and the lines x = 2 and x = 5 is approximated by:

- **A.**  $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$
- **B.**  $2\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4}\right)$
- C.  $\frac{1}{2} + \frac{1}{3} + \frac{1}{4}$
- **D.**  $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$
- **E.**  $\frac{1}{3} + \frac{1}{4} + \frac{1}{5}$

#### **Question 22**

If the average rate of change of the function  $f(x) = 2x^2 + ax - 3$  over the interval [1, 3] is 7, the value of a is:

- **A.** -1
- **B.** 1
- **C.** 15
- **D.** 3
- $\mathbf{E}$ . 0

#### **SECTION 2**

#### **Instructions for Section 2**

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an **exact** answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Where an instruction to **use calculus** is stated for a question, you must show an appropriate derivative or anti-derivative.

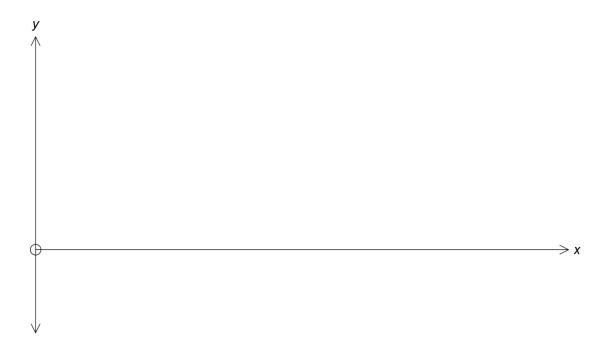
Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

#### Question 1 (16 marks)

Consider the function  $f(x) = x^3 e^{-2x}$ .

| 1. | Find the values of a and b so that $f'(x) = x^a e^{-2x} (3 + bx)$ . | 3 marks     |  |
|----|---------------------------------------------------------------------|-------------|--|
|    |                                                                     |             |  |
|    |                                                                     |             |  |
|    |                                                                     |             |  |
|    |                                                                     |             |  |
|    |                                                                     |             |  |
|    |                                                                     |             |  |
|    |                                                                     |             |  |
|    |                                                                     |             |  |
|    |                                                                     | <del></del> |  |
| b. | Find the coordinates of the axes intercepts, if any.                | 1 mark      |  |
|    |                                                                     |             |  |
|    |                                                                     |             |  |
|    |                                                                     |             |  |
|    |                                                                     |             |  |

**SECTION 2 – Question 1 - continued** 


© TSSM 2014 Page 10 of 17

**c.** Find the stationary points of  $f(x) = x^3 e^{-2x}$ .

3 marks

\_\_\_\_\_

**d.** Sketch the graph of f(x) clearly labelling all axes intercepts and turning point(s). 4 marks



e. On the axes above, sketch the line  $y = \frac{1}{10}x$ , labelling the point(s) of intersection of the two graphs correct to three decimal places. 2 marks

SECTION 2 – Question 1 - continued

**TURN OVER** 

| f.  | Find the area, correct to 4 decimal places, between the curve $y = f(x)$ and the line $y = \frac{1}{10}x$ .                                                                                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                        |
| The | testion 2 (13 marks)  e distance, $d$ metres, of water from a fixed point $O$ on the sand at any time $t$ hours after 0am is modelled by the equation $d(t) = 4 + 2sin\left(\frac{\pi(t+2)}{6}\right)$ |
| a.  | State the maximum distance of water from the fixed point and the time when it occurs in the first 24 hours.  3 marks                                                                                   |
|     |                                                                                                                                                                                                        |
| L   |                                                                                                                                                                                                        |
| b.  | State the period of the function $d(t)$ . 1 mark                                                                                                                                                       |
|     |                                                                                                                                                                                                        |

| c.             | When will the distance of the water be 3.6m from <i>O</i> the second time in the first 24 hours? 3 marks |
|----------------|----------------------------------------------------------------------------------------------------------|
|                |                                                                                                          |
|                |                                                                                                          |
|                |                                                                                                          |
| d.             | At what time(s) is the water closest to the fixed point on the sand, in the first 24 hours?  2 marks     |
|                |                                                                                                          |
|                |                                                                                                          |
| Chi <i>O</i> . | ldren are allowed to play on the sand when the water is 2.5 m or less from the fixed point               |
| e.             | At what time(s) between 9am and 6pm are the children likely to play?  4 marks                            |
|                |                                                                                                          |
|                |                                                                                                          |
|                |                                                                                                          |
|                |                                                                                                          |

SECTION 2 – continued TURN OVER

© TSSM 2014 Page 13 of 17

# Question 3 (15 marks)

Let  $f: D \to R$ ,  $f(x) = 2 - log_e(x+1)$  and D is the largest possible domain for which f is defined.

| Find D.                                                                                                            | 1 mark                   |
|--------------------------------------------------------------------------------------------------------------------|--------------------------|
| Describe the sequence of transformations which when applied to the graph of $y = 1$ produces the graph of $f(x)$ . | = $log_e x$ ,<br>3 marks |
|                                                                                                                    |                          |
| Find the rule for $f^{-1}$ , the inverse of $f$ . State the domain of $f^{-1}$ .                                   | 4 marks                  |
|                                                                                                                    |                          |
| Find the point of intersection of $f$ and $f^{-1}$ .                                                               | 2 marks                  |
| Use calculus to find the exact value of the gradient of the graph of $f$ when $x = 4$ .                            | . 2 mark                 |

**SECTION 2 – Question 3 -** continued

© TSSM 2014 Page 14 of 17

| f.  | Find the equation of the normal to the graph of $y = f(x)$ when $x = 4$ .                                                                                                               |             |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
|     |                                                                                                                                                                                         |             |  |  |  |  |
|     |                                                                                                                                                                                         |             |  |  |  |  |
|     |                                                                                                                                                                                         |             |  |  |  |  |
|     |                                                                                                                                                                                         |             |  |  |  |  |
|     |                                                                                                                                                                                         |             |  |  |  |  |
| The | nestion 4 (14 marks) e probability of a student getting into a TAFE institution is 0.15. Five students nool submit an application to gain entry into TAFE, correct to 4 decimal places. | of the same |  |  |  |  |
| a.  | Find the probability that none of the five gain entry into TAFE.                                                                                                                        | 2 marks     |  |  |  |  |
|     |                                                                                                                                                                                         |             |  |  |  |  |
| b.  | Find the probability that only one of the five gain entry into TAFE.                                                                                                                    | 2 marks     |  |  |  |  |
|     |                                                                                                                                                                                         | 2 1         |  |  |  |  |
| c.  | Find the probability that at least one of the five gain entry into TAFE.                                                                                                                | 2 marks     |  |  |  |  |
|     |                                                                                                                                                                                         |             |  |  |  |  |
|     |                                                                                                                                                                                         |             |  |  |  |  |

**SECTION 2 – Question 4 -** continued

© TSSM 2014 Page 15 of 17

### **TURN OVER**

| d. | If 110 candidates were applying for TAFE, find the probability of between (inclusive) students gaining an entry into TAFE.                |                    |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|
|    |                                                                                                                                           |                    |  |  |  |  |
|    | er the past five years, the number of students gaining entry into TAFE is normally tributed with mean 20 700 and standard deviation 2915. |                    |  |  |  |  |
| e. | Find the probability of the number of TAFE students exceeding 21 000.                                                                     | 3 marks            |  |  |  |  |
|    |                                                                                                                                           |                    |  |  |  |  |
| f. | Find the probability that a particular year will have between 18 000 and 25 00 students.                                                  | 00 TAFE<br>2 marks |  |  |  |  |
|    |                                                                                                                                           |                    |  |  |  |  |

END OF QUESTION AND ANSWER BOOK

© TSSM 2014 Page 16 of 17

# MULTIPLE CHOICE ANSWER SHEET

Circle the letter that corresponds to each correct answer.

| Quartien |   |   |   |   |   |
|----------|---|---|---|---|---|
| Question |   |   |   |   |   |
| 1 A      |   | В | С | D | Е |
| 2 A      |   | В | C | D | Е |
| 3        | A | В | C | D | Е |
| 4        | A | В | C | D | Е |
| 5        | A | В | C | D | Е |
| 6        | A | В | C | D | Е |
| 7        | A | В | С | D | Е |
| 8        | A | В | С | D | Е |
| 9        | A | В | С | D | Е |
| 10       | A | В | С | D | Е |
| 11       | A | В | С | D | Е |
| 12       | A | В | С | D | Е |
| 13       | A | В | С | D | Е |
| 14       | A | В | C | D | Е |
| 15       | A | В | С | D | Е |
| 16       | A | В | C | D | Е |
| 17       | A | В | С | D | Е |
| 18       | A | В | С | D | Е |
| 19       | A | В | С | D | Е |
| 20       | A | В | С | D | Е |
| 21       | A | В | С | D | Е |
| 22       | A | В | С | D | Е |

© TSSM 2014 Page 17 of 17