TEST 3

Technology active end-of-year examination Functions and graphs, Algebra Section A: 16 marks Section B: 30 marks Suggested writing time: 70 minutes

Section A: Multiple-choice questions

Specific instructions to students

- A correct answer scores 1 mark, and an incorrect answer scores 0.
- Marks are not deducted for incorrect answers.
- No marks are given if more than one letter is shaded on the answer sheet.
- Choose the alternative that most correctly answers the question and mark your choice on the multiple-choice answer section at the bottom of each page, as shown in the example below.

- Use pencil only.
- Working space is provided under those questions that require working out.

QUESTION 1

Simplified, $\log_{10}(100) + \log_{10}\left(\frac{1}{100}\right) - 3\log_{10}(\sqrt{x}) - 2\log_{10}(2)$ can be expressed as

A
$$-\frac{3}{2}\log_{10}(4x)$$

B $\log_{10}\left(4x^{\frac{3}{2}}\right)$
C $\log_{10}(4) + x^{\frac{3}{2}}$
D $\log_{10}\left(-4x^{\frac{3}{2}}\right)$
E $-\log_{10}\left(4x^{\frac{3}{2}}\right)$

$$log_{10} (100) + log_{10} \left(\frac{1}{100}\right) - 3 log_{10} \left(\sqrt{x}\right) - 2 log_{10} (2)$$

= log_{10} (10²) + log_{10} (10⁻²) - 3 log_{10} \left(\sqrt{x}\right) - 2 log_{10} (2)
= 2 log_{10} (10) - 2 log_{10} (10) - log_{10} \left(x^{\frac{3}{2}}\right) - log_{10} (4)
= 2 - 2 - log_{10} \left(x^{\frac{3}{2}}\right) - log_{10} (4)
= -log_{10} \left(4x^{\frac{3}{2}}\right)

QUESTION 2

Solve for *x* in the equation $2^x - 3 \times 2^{-x} = 2$

$$\mathbf{A} \quad x = \frac{\log_2(3)}{\log_2(2)}$$
$$\mathbf{B} \quad x = \frac{\log_e(2)}{\log_e(3)}$$
$$\mathbf{C} \quad x = \log_3(2)$$
$$\mathbf{D} \quad x = 2$$

E x = 3

QUESTION 3

Consider $f(x) = 2 + \log_e (3 - x)$ and $g(x) = 3 - e^{x-2}$. The rule and domain for the function g(f(x)), respectively, are

- A $y = 2 + \log_e(3 x), x \in (-\infty, 3)$
- **B** $y = 3 e^{x-2}, x \in (-\infty, 3)$
- $\mathbf{C} \quad y = 3 e^{x-2}, \, x \in \mathbf{R}$
- **D** $y = x, x \in R$
- $\mathbf{E} \quad y=x,\,x\in\,(-\infty,\,3)$

 $f(x) = 2 + \log_e(3 - x) \text{ and } g(x) = 3 - e^{x-2}.$ Test g(f(x)). Test ran $(f) \subseteq \text{dom } (g)$. $R \subseteq R$ $f(x) = 2 + \log_e(3 - x) \text{ and } g(x) = 3 - e^{x-2} \text{ are inverses}$ of each other so g(f(x)) = x. dom $g(f(x)) = \text{dom } f(x) = (-\infty, 3)$

QUESTION 4

If $f(x) = 2 + \log_e (3 - x)$ and $g(x) = 3 - e^{x-2}$, then the graph for the function g(f(x)) looks like

QUESTION 6

The maximal domain and range, respectively, of the graph of $y = x^{\frac{5}{2}} + 1$ is

A R, R

- **B** R, $(0, \infty)$
- **C** $[0, \infty), [-1, \infty)$
- **D** $[0, \infty), [1, \infty)$
- **E** $(0, \infty), [0, \infty)$

 $y = x^{\frac{5}{2}} + 1$ domain: [0, \infty), range: [1, \infty)

QUESTION 7

 $P(x) = ax^3 + bx^2 + x - 10$ is a cubic polynomial. Factorised into the product of linear factors, P(x) can be expressed as P(x) = (2x + 5)(x - 1)(x + 2). The values of *a* and *b* are

- **A** a = 5, b = -2
- **B** *a* = 1, *b* = −10
- **C** a = 2, b = 7
- **D** a = 7, b = -2
- **E** a = 2, b = -7

 $P(x) = ax^{3} + bx^{2} + x - 10 = (2x + 5)(x - 1)(x + 2).$ Expanded, $(2x + 5)(x - 1)(x + 2) = 2x^{3} + 7x^{2} + x - 10$ ∴ a = 2, b = 7

QUESTION 8

A graph is reflected over the *y*-axis, then dilated by 2 units parallel to the *y*-axis. The transformation matrix, *T*, which describes this is

 $\mathbf{A} \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$ $\mathbf{B} \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$ $\mathbf{C} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$ $\mathbf{D} \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix}$ $\mathbf{E} \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}$

A graph is reflected over the *y*-axis, then dilated by 2 units parallel to the *y*-axis. $T = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$

QUESTION 9

The graph of $y = \frac{1}{(x-1)^2}$ is reflected over the *y*-axis, then dilated by 2 units parallel to the *y*-axis. The image after this transformation is

A
$$y = \frac{-1}{(x-1)^2}$$

B $y = \frac{1}{(x-1)^2}$
C $y = \frac{2}{(x+1)^2}$
D $y = \frac{1}{(x+1)^2}$
E $y = \frac{-2}{(x-1)^2}$

The graph of $y = \frac{1}{(x-1)^2}$ is reflected over the *y*-axis, then dilated by 2 units parallel to the *y*-axis. Image is $y = \frac{2}{(-x-1)^2} = \frac{2}{(x+1)^2}$

OUESTION 10 If $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T\left(\begin{vmatrix} x \\ y \end{vmatrix} \right) = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ is applied to the function $y = \sqrt{x}$, the image function is **A** $y + 4 = \sqrt{x + 2}$ **B** $y = \sqrt{x-2} + 4$ C $y = \sqrt{x-2} - 4$ **D** $y = 4\sqrt{x-2}$ E $y = 4\sqrt{x+2}$ If $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{vmatrix} x \\ y \end{vmatrix} + \begin{vmatrix} 2 \\ 4 \end{vmatrix}$ is applied to the function $y = \sqrt{x}$, y = f(x - b) means that y = f(x) has been translated 'b' units to the right. y = f(x) + c means that y = f(x) has been translated 'c' units up. Translation of *b* units right and *c* units up $\begin{bmatrix} x+2\\ y+4 \end{bmatrix} = \begin{bmatrix} x_1\\ y_1 \end{bmatrix}$ is applied to the function $y = \sqrt{x}$, so $x = x_1 - 2$ and $y = y_1 - 4$ So $y = \sqrt{x}$ becomes $y_1 - 4 = \sqrt{x_1 - 2}$ $\therefore y = \sqrt{x-2} + 4$

QUESTION 11

The transformations required to change $y = \frac{1}{\sqrt{r}}$ to

$$y = 3 - \frac{2}{\sqrt{x+1}}$$
 are:

- A dilation by a factor of 2 from the *x*-axis, translation of 1 unit to the right, reflection over the *y*-axis, translation of 3 units down
- **B** dilation by a factor of 2 from the *y*-axis, translation of 1 unit to the right, translation of 3 units up
- **C** dilation by a factor of 2 from the *x*-axis, translation of 1 unit to the left, reflection over the *x*-axis and translation of 3 units up
- **D** dilation by a factor of 2 from the *x*-axis, reflection over the *y*-axis, translation of 1 unit to the left, translation of 3 units up
- E dilation by a factor of $\frac{1}{2}$ from the *y*-axis, translation of 1 unit to the right, translation of 3 units up

$$y = \frac{1}{\sqrt{x}}$$
 to $y = 3 - \frac{2}{\sqrt{x+1}}$

- dilation by a factor of 2 from the *x*-axis
- translation of 1 unit to the left
- reflection over the *x*-axis
- translation of 3 units up

QUESTION 12

If $f(x) = -\sqrt{-(x+1)} - 2$, then the domain of the inverse function f^{-1} is

- A $(-\infty, -1)$
- **B** (−∞, −2)
- C (−2, ∞)
- D [2,∞)
- E (-∞, -2]

 $f(x) = -\sqrt{-(x+1)} - 2$ Domain of f^{-1} = range $f(x) = (-\infty, -2]$.

QUESTION 13

The functionality equation $f(x) \times f(y) = f(x + y)$ is satisfied by

- $\begin{array}{c} \mathbf{A} \quad f(x) = e^x \\ \mathbf{B} \quad f(x) = 1 \end{array}$
- $\mathbf{B} \quad f(x) = \frac{1}{x}$
- $\mathbf{C} \quad f(x) = \log_e(x)$
- $\mathbf{D} \quad f(x) = x$
- $\mathbf{E} \quad f(x) = 2x^2$

 $f(x) \times f(y) = f(x + y)$ looks like the rule $e^x \times e^y = e^{x+y}$ and is satisfied by $f(x) = e^x$.

QUESTION 14

Which of the following is not a polynomial?

A f(x) = 1 + 2xB $f(x) = -3 + 4x + 2x^2$ C $f(x) = 4x + 2x^3$ D $f(x) = x^6 - 1$ E $f(x) = x^2 + \frac{1}{x}$

 $f(x) = x^2 + \frac{1}{x}$ is not a polynomial because of the $\frac{1}{x}$ term, which is the power of -1.

QUESTION 15

The sum of the solutions to the equation $\tan (2x) = -1$ for $-\pi \le x \le 0$ is

A
$$\frac{3\pi}{4}$$

B $-\frac{3\pi}{4}$
C $-\frac{\pi}{2}$
D $-\frac{\pi}{8}$ and $-\frac{5\pi}{8}$
E $\frac{5\pi^2}{64}$

$$\tan (2x) = -1 \text{ for } -\pi \le x \le 0$$

$$\text{solve}(\tan (2 \cdot x) = -1 | -\pi \le x \le 0, x) \\ \left\{x = \frac{-5 \cdot \pi}{8}, x = \frac{-\pi}{8}\right\}$$
Reference angle $= \frac{\pi}{4}$

$$2x = -\frac{\pi}{4}, -\pi - \frac{\pi}{4}$$

$$x = -\frac{\pi}{8}, -\frac{5\pi}{8}$$
Sum $= -\frac{\pi}{8}, -\frac{5\pi}{8} = -\frac{6\pi}{8} = -\frac{3\pi}{4}$

QUESTION 16

$$\sin\left(\frac{11\pi}{6}\right) \text{ is equivalent to}$$

$$\mathbf{A} \quad \cos\left(\frac{11\pi}{6}\right)$$

$$\mathbf{B} \quad \sin\left(\frac{\pi}{6}\right)$$

$$\mathbf{C} \quad \cos\left(\frac{16\pi}{3}\right)$$

D
$$\cos\left(\frac{11\pi}{3}\right)$$

E $\tan\left(\frac{11\pi}{3}\right)$
 $\sin\left(\frac{11\pi}{6}\right) = -\frac{1}{2} \operatorname{and} \cos\left(\frac{16\pi}{3}\right) = -\frac{1}{2}$

ONE ANSWER PER LINE	USE PENCIL ONLY
1 A B C D	9 A B D E
2 B C D E	10 A C D E
3 A B C D	11 A B D E
4 A B C E	12 A B C D
5 B C D E	13 B C D E
6 A B C E	14 A B C D
7 A B D E	15 A C D E
8 B C D E	16 A B D E

Section B: Extended-response questions

Specific instructions to students

- Answer all of the questions in the spaces provided.
- Show all workings in questions where more than one mark is available.
- An exact value must be provided in questions where a numerical answer is required, unless otherwise specified.

QUESTION 17

a If $3x^3 + ax^2 + 5x = 3(x + b)^3 + c$, find all possible values of *a*, *b* and *c*.

 $3x^{3} + ax^{2} + 5x = 3(x + b)^{3} + c = 3(x^{3} + 3x^{2}b + 3xb^{2} + b^{3}) + c$ So $3x^{3} + ax^{2} + 5x = 3x^{3} + 9x^{2}b + 9xb^{2} + 3b^{3} + c$ Equating coefficients a = 9b (coefficients of x^{2}) $5 = 9b^{2}$ (coefficients of x^{1}) $0 = 3b^{3} + c$ (coefficient of x^{0})

$$\begin{vmatrix} expand(3 \cdot (x+b)^{3}+c) \\ 3 \cdot x^{2}+3 \cdot b^{2}+c^{2}+6 \cdot b \cdot x \\ 3 \cdot x^{2}+3 \cdot b^{2}+c^{2}+6 \cdot b \cdot x \\ 5 = 9b^{2} \\ 0 = c+3b^{3} | a, b, c \\ \left\{ \left\{ a = -3 \cdot \sqrt{5}, b = \frac{-\sqrt{5}}{3}, c = \frac{5 \cdot \sqrt{5}}{9} \right\}, \left\{ a = 3 \cdot \sqrt{5}, b = \frac{\sqrt{5}}{3}, c = -5 \right\} \\ \forall \forall \forall b = 1 \\ \forall \forall b = 1 \\ \forall \forall b = 1 \\ \forall b = 1$$

4 marks

b Letting $f_1(x) = 3(x + b)^3 + c$, and using values from part **a**, where b < 0 and c > 0, find the *x*-coordinates of the point(s) where f(x) = 0.

$$b < 0 \text{ and } c > 0$$

$$f(x) = 3\left(x - \frac{\sqrt{5}}{3}\right)^3 + \frac{5\sqrt{5}}{9}$$

$$f(x) = 0 \text{ gives}$$

$$\left(x - \frac{\sqrt{5}}{3}\right)^3 = -\frac{5\sqrt{5}}{27}$$

$$x = -\frac{\sqrt{5}}{3} + \frac{\sqrt{5}}{3}$$

$$x = 0$$

1 mark

c Letting $f_2(x) = 3(x + b)^3 + c$, and using values from part **a**, where b > 0 and c < 0, find the *x*-coordinates of the point(s) where f(x) = 0.

$$b > 0 \text{ and } c < 0$$

$$f(x) = 3\left(x + \frac{\sqrt{5}}{3}\right)^3 - \frac{5\sqrt{5}}{9}$$

$$f(x) = 0 \text{ gives}$$

$$\left(x + \frac{\sqrt{5}}{3}\right)^3 = \frac{5\sqrt{5}}{27}$$

$$x = \frac{\sqrt{5}}{3} - \frac{\sqrt{5}}{3}$$

$$x = 0$$

1 mark

d Hence, find where $f_1(x) = f_2(x)$.

Point of intersection at (0, 0).

1 mark

e Sketch the graphs of $f_1(x)$ and $f_2(x)$ on the same axes, labelling point(s) of intersection.

3 marks

С

f Sketch the inverse of graph $f_1(x)$ on the same axes, labelling point(s) of intersection.

2 marks (Total: 12 marks)

QUESTION 18

a Find the general solution to the equation $2 \cos(2x) = 1$.

 $\cos (2x) = \frac{1}{2}$ $2x = 2n\pi \pm \cos^{-1}\left(\frac{1}{2}\right)$ $2x = 2n\pi \pm \frac{\pi}{3}$ $x = n\pi \pm \frac{\pi}{6}, n \in \mathbb{Z}$

2 marks

b Hence, give the first four positive solutions to $\cos(2x) = \frac{1}{2}$.

4 marks

Sketch the graph of $f(x) = 2 \cos(2x) - 1$ for the domain $x \in [0, 2\pi]$, showing the coordinates of the axial intercepts.

3 marks (Total: 9 marks)

QUESTION 19

The temperature of a cup of tea cools according to the rule $T = T_0 \times 2^{-kt}$, where *T* is the temperature in degrees Celsius and *t* is time in hours. The original temperature of the cup of tea is 90°C.

a What is T_0 ?

$$T_{0} = 90^{\circ} \text{C}$$

1 mark

It takes 30 minutes for the temperature to halve.

b What fraction of the original temperature is the temperature of the cup of tea after 60 minutes?

 $T = T_0 \times 2^{-kt}$ It takes 30 minutes for the temperature to halve, so $t = \frac{1}{2}$ and $T = \frac{1}{2} T_0$. $\Rightarrow \frac{1}{2} T_0 = T_0 \times 2^{-0.5k}$ $\Rightarrow \frac{1}{2} = 2^{-0.5k}$ $2^{-1} = 2^{-0.5k}$ This gives $\frac{1}{2} k = 1$ k = 2After 60 minutes, i.e. at t = 1 $T = T_0 \times 2^{-2 \times 1}$ $T = T_0 \times \frac{1}{4}$ The fraction of the original temperature after 60 minutes $= \frac{1}{4}$

3 marks

c What is the temperature of the cup of tea after 60 minutes?

```
Using the result from part b,

T = 90 \times \frac{1}{4} = 22.5^{\circ}\text{C}
```

1 mark

d A different drink's temperature follows the formula $T = T_0 \times 2^{-kt} + 20$, where *T* is the temperature in degrees Celsius and *t* is time in hours. It takes 20 minutes for the temperature to halve and the original temperature of the cup of tea is 90°C. Find the value of *k* in this case, giving your answer correct to 2 decimal places.

 $T = T_0 \times 2^{-kt} + 20$ $t = 0, \text{ gives } T = T_0 + 20$ Original temperature of the cup of tea is 90°C. $90 = T_0 + 20, \text{ so } T_0 = 70$ It takes 20 minutes for the temperature to halve, so $t = \frac{1}{3}$. $\Rightarrow \frac{1}{2} \times 90 = 70 \times 2^{-k\frac{1}{3}} + 20$ $45 = 70 \times 2^{-k\frac{1}{3}} + 20$ This gives $k \approx 4.46$ $\left\| \text{solve} \left(45 = 70 \cdot 2^{-\frac{k}{3}} + 20, \frac{k}{3} \right) \right\|_{k=4.456280482}$

2 marks

The formula is changed to suit another drink. The graph of $T = T_0 \times 2^{-kt}$ has a sequence of transformations applied to it, in the order given.

- The graph is translated 15 units in the negative direction of the *t*-axis.
- It is then translated 7 units in the negative direction of the *T*-axis
- It is then dilated by a factor of 5 from the *t*-axis
- It is then dilated by a factor of $\frac{1}{2}$ from the *T*-axis
- The graph is then reflected in the *T*-axis
- **e** After all these transformations are applied, what is the new rule for *T*(*t*)?

$T = T_0 \times 2^{-kt}$	
Step 1: translated 15 units in	$T_1 = T_0 \times 2^{-k(t+15)}$
the negative direction of the	- ·
<i>t</i> -axis	
Step 2: translated 7 units in	$T_2 = T_0 \times 2^{-k(t+15)} - 7$
the negative direction of the	2 0
<i>T</i> -axis	
Step 3: dilated by a factor of	$T_3 = 5T_0 \times 2^{-k(t+15)} - 35$
5 from the <i>t</i> -axis	
Step 4: dilated by a factor of $\frac{1}{2}$ from the <i>T</i> -axis	$T_4 = 5T_0 \times 2^{-k(2t+15)} - 35$
	$T = 5T \times 2^{-k(-2t+15)}$ 25
Step 5: reflected in the <i>T</i> -axis	$T_5 = 5T_0 \times 2^{-k(-2t+15)} - 35$
New rule for $T(t)$	$T_5 = 5T_0 \times 2^{k(2t-15)} - 35$

2 marks (Total: 9 marks)