TEST 3

Technology active end-of-year examination Functions and graphs, Algebra Section A: 16 marks Section B: 30 marks Suggested writing time: 70 minutes

Section A: Multiple-choice questions

Specific instructions to students

- A correct answer scores 1 mark, and an incorrect answer scores 0.
- Marks are not deducted for incorrect answers.
- No marks are given if more than one letter is shaded on the answer sheet.
- Choose the alternative that most correctly answers the question and mark your choice on the multiple-choice answer section at the bottom of each page, as shown in the example below.

$$
I \quad \boxed{A} \quad \boxed{B} \quad \boxed{C} \quad \boxed{3}
$$

$$
1 \quad \boxed{A} \quad \boxed{B} \quad \boxed{C} \quad \boxed{C}
$$

- Use pencil only.
- Working space is provided under those questions that require working out.

QUESTION 1

Simplified, $\log_{10}(100) + \log_{10} \left(\frac{1}{10}\right)$ 100 ſ $\left(\frac{1}{100}\right)$ – 3 $\log_{10}(\sqrt{x})$ – 2 $\log_{10}(2)$ can be expressed as

A $-\frac{3}{2}\log_{10}(4x)$ **B** $log_{10} \left(4x^{\frac{3}{2}} \right)$ \overline{a} $\overline{1}$ **C** $\log_{10}(4) + x^{\frac{3}{2}}$ 2 \mathbf{D} \log_{10} – $\overline{\mathcal{L}}$ \overline{a} $4x^{\frac{3}{2}}$ **E** $-\log_{10} \left(4x^{\frac{3}{2}} \right)$ ľ $\overline{}$

$$
\log_{10} (100) + \log_{10} \left(\frac{1}{100}\right) - 3 \log_{10} \left(\sqrt{x}\right) - 2 \log_{10} (2)
$$

= $\log_{10} (10^2) + \log_{10} (10^{-2}) - 3 \log_{10} \left(\sqrt{x}\right) - 2 \log_{10} (2)$
= $2 \log_{10} (10) - 2 \log_{10} (10) - \log_{10} \left(\frac{3}{2}\right) - \log_{10} (4)$
= $2 - 2 - \log_{10} \left(\frac{3}{2}\right) - \log_{10} (4)$
= $-\log_{10} \left(4x^{\frac{3}{2}}\right)$

QUESTION 2

```
Solve for x in the equation 2^x - 3 \times 2^{-x} = 2
```
A
$$
x = \frac{\log_2(3)}{\log_2(2)}
$$

\n**B** $x = \frac{\log_e(2)}{\log_e(3)}$
\n**C** $x = \log_3(2)$
\n**D** $x = 2$

 $E \quad x = 3$

QUESTION 3

Consider $f(x) = 2 + \log_e(3 - x)$ and $g(x) = 3 - e^{x-2}$. The rule and domain for the function $g(f(x))$, respectively, are

A $y = 2 + \log_{e}(3 - x)$, $x \in (-\infty, 3)$ **B** $y = 3 - e^{x-2}$, $x \in (-\infty, 3)$ **C** $y = 3 - e^{x-2}$, $x \in R$ **D** *y* = *x*, *x* ∈ *R* **E** *y* = *x*, *x* ∈ (–∞, 3)

 $f(x) = 2 + \log_e(3 - x)$ and $g(x) = 3 - e^{x-2}$. Test $g(f(x))$. Test ran $(f) \subseteq$ dom (g) . *R* ⊆ *R* $f(x) = 2 + \log(3 - x)$ and $g(x) = 3 - e^{x-2}$ are inverses of each other so $g(f(x)) = x$. dom $g(f(x)) = \text{dom } f(x) = (-\infty, 3)$

QUESTION 4

If $f(x) = 2 + \log_e(3 - x)$ and $g(x) = 3 - e^{x-2}$, then the graph for the function $g(f(x))$ looks like

QUESTION 6

The maximal domain and range, respectively, of the graph of $y = x^2 + 1$ is 5

A *R*, *R*

- **B** R , $(0, \infty)$
- **C** [0, ∞), $[-1, ∞)$
- **D** [0, ∞), [1, ∞)
- **E** $(0, \infty)$, $[0, \infty)$

 $y = x^{\frac{5}{2}} + 1$ domain: [0, ∞), range: [1, ∞)

QUESTION 7

 $P(x) = ax^3 + bx^2 + x - 10$ is a cubic polynomial. Factorised into the product of linear factors, $P(x)$ can be expressed as $P(x) = (2x + 5)(x - 1)(x + 2)$. The values of *a* and *b* are

- **A** $a = 5, b = -2$ **B** $a = 1, b = -10$
- **C** $a = 2, b = 7$
- **D** $a = 7, b = -2$
- **E** $a = 2, b = -7$

 $P(x) = ax^3 + bx^2 + x - 10 = (2x + 5)(x - 1)(x + 2).$ Expanded, $(2x + 5)(x - 1)(x + 2) = 2x^3 + 7x^2 + x - 10$ ∴ $a = 2, b = 7$

QUESTION 8

A graph is reflected over the *y*-axis, then dilated by 2 units parallel to the *y*-axis. The transformation matrix, *T*, which describes this is

 $\mathbf{A} \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$ $\begin{bmatrix} -1 & 0 \end{bmatrix}$ $\mathbf{B} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $0 -2$ L $\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$ $C \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ 0 ⁻¹ L $\begin{bmatrix} 2 & 0 \ 0 & -1 \end{bmatrix}$ $\mathbf{D} \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix}$ L $\begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix}$ 2 0 $0 -1$ **^E** − $\begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}$ 2 0 0 1

A graph is reflected over the *y*-axis, then dilated by 2 units parallel to the *y*-axis. $T = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$ 1 0 0 2

QUESTION 9

The graph of $y = \frac{1}{(x-1)^2}$ is reflected over the *y*-axis, then dilated by 2 units parallel to the *y*-axis. The image after this transformation is

A
$$
y = \frac{-1}{(x-1)^2}
$$

\n**B** $y = \frac{1}{(x-1)^2}$
\n**C** $y = \frac{2}{(x+1)^2}$
\n**D** $y = \frac{1}{(x+1)^2}$
\n**E** $y = \frac{-2}{(x-1)^2}$

The graph of $y = \frac{1}{(x - 1)^{2}}$ $\frac{1}{(x-1)^2}$ is reflected over the *y*-axis, then dilated by 2 units parallel to the *y*-axis. Image is $y = \frac{2}{(-x-1)}$ $\frac{2}{(-x-1)^2} = \frac{2}{(x+1)^2}$ $(x+1)^2$

QUESTION 10 If $T: \mathbb{R}^2 \to \mathbb{R}^2$, T *x y* L $\begin{bmatrix} x \\ y \end{bmatrix}$ ſ $\overline{\mathcal{K}}$ ľ $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$ I $\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ 4 I $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ is applied to the function $y = \sqrt{x}$, the image function is **A** $y + 4 = \sqrt{x+2}$ **B** $y = \sqrt{x-2} + 4$ **C** $y = \sqrt{x-2} - 4$ **D** $y = 4\sqrt{x-2}$ **E** $y = 4\sqrt{x+2}$ If $T: \mathbb{R}^2 \to \mathbb{R}^2$, T $\begin{bmatrix} x \\ y \end{bmatrix}$ ſ $\overline{\mathcal{S}}$ ľ $\overline{}$ $\begin{bmatrix} x \\ y \end{bmatrix}$ = $\begin{bmatrix} x \\ y \end{bmatrix}$ *x* $\begin{array}{c} x \\ y \end{array}$ + $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ 2 $4 \mid$ is applied to the function $y = \sqrt{x}$, $y = f(x - b)$ means that $y = f(x)$ has been translated '*b*' units to the right. $y = f(x) + c$ means that $y = f(x)$ has been translated '*c*' units up. Translation of *b* units right and *c* units up + + L $\begin{bmatrix} x+2 \\ y+4 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$ *x y x y* 2 4 1 1 is applied to the function $y = \sqrt{x}$, so $x = x_1 - 2$ and $y = y_1 - 4$ So $y = \sqrt{x}$ becomes $y_1 - 4 = \sqrt{x_1 - 2}$ ∴ $y = \sqrt{x-2} + 4$

QUESTION 11

The transformations required to change $y = \frac{1}{6}$ *x* to

$$
y = 3 - \frac{2}{\sqrt{x+1}}
$$
 are:

- **A** dilation by a factor of 2 from the *x*-axis, translation of 1 unit to the right, reflection over the *y*-axis, translation of 3 units down
- **B** dilation by a factor of 2 from the *y*-axis, translation of 1 unit to the right, translation of 3 units up
- **C** dilation by a factor of 2 from the *x*-axis, translation of 1 unit to the left, reflection over the *x*-axis and translation of 3 units up
- **D** dilation by a factor of 2 from the *x*-axis, reflection over the *y*-axis, translation of 1 unit to the left, translation of 3 units up
- **E** dilation by a factor of $\frac{1}{2}$ from the *y*-axis, translation of 1 unit to the right, translation of 3 units up

$$
y = \frac{1}{\sqrt{x}}
$$
 to $y = 3 - \frac{2}{\sqrt{x+1}}$

- • dilation by a factor of 2 from the *x*-axis
- translation of 1 unit to the left
- reflection over the *x*-axis
- translation of 3 units up

QUESTION 12

If $f(x) = -\sqrt{-(x+1)} - 2$, then the domain of the inverse function f^{-1} is

- **A** $(-∞, -1)$
- **B** $(-∞, -2)$
- $C \quad (-2, \infty)$
- D [2, ∞)
- **E** $(-∞, -2]$

 $f(x) = -\sqrt{-(x+1)} - 2$ Domain of f^{-1} = range $f(x) = (-\infty, -2]$.

QUESTION 13

The functionality equation $f(x) \times f(y) = f(x + y)$ is satisfied by

A $f(x) = e^x$ **B** $f(x) = \frac{1}{x}$

- **C** $f(x) = log_{x}(x)$
- **D** $f(x) = x$
- **E** $f(x) = 2x^2$

 $f(x) \times f(y) = f(x + y)$ looks like the rule $e^x \times e^y = e^{x + y}$ and is satisfied by $f(x) = e^x$.

QUESTION 14

Which of the following is **not** a polynomial?

A $f(x) = 1 + 2x$ **B** $f(x) = -3 + 4x + 2x^2$ **C** $f(x) = 4x + 2x^3$ **D** $f(x) = x^6 - 1$ **E** $f(x) = x^2 + \frac{1}{x}$ *x*

QUESTION 15

The sum of the solutions to the equation tan $(2x) = -1$ for $-\pi \leq x \leq 0$ is

QUESTION 16

$$
\sin\left(\frac{11\pi}{6}\right)
$$
 is equivalent to
A $\cos\left(\frac{11\pi}{6}\right)$
B $\sin\left(\frac{\pi}{6}\right)$
C $\cos\left(\frac{16\pi}{3}\right)$

D
$$
\cos\left(\frac{11\pi}{3}\right)
$$

\nE $\tan\left(\frac{11\pi}{3}\right)$
\n $\sin\left(\frac{11\pi}{6}\right) = -\frac{1}{2}$ and $\cos\left(\frac{16\pi}{3}\right) = -\frac{1}{2}$

Section B: Extended-response questions

Specific instructions to students

- Answer all of the questions in the spaces provided.
- Show all workings in questions where more than one mark is available.
- An exact value must be provided in questions where a numerical answer is required, unless otherwise specified.

QUESTION 17

a If $3x^3 + ax^2 + 5x = 3(x + b)^3 + c$, find all possible values of *a*, *b* and *c*.

 $3x^3 + ax^2 + 5x = 3(x + b)^3 + c = 3(x^3 + 3x^2b + 3xb^2 + b^3) + c$ So $3x^3 + ax^2 + 5x = 3x^3 + 9x^2b + 9xb^2 + 3b^3 + c$ Equating coefficients $a = 9b$ (coefficients of x^2) $5 = 9b^2$ (coefficients of x^1) $0 = 3b^3 + c$ (coefficient of x^0)

$$
\begin{array}{|c|c|}\n\hline\n\text{expand}(3 \cdot (x+b) \, 3+c) & 3 \cdot x^2 + 3 \cdot b^2 + c^2 + 6 \cdot b \cdot x \\
\hline\n\begin{vmatrix}\na=9b \\
5=9b^2 \\
0=c+3b^3\n\end{vmatrix}\n\mathbf{a}, \mathbf{b}, \mathbf{c} \\
\left\{\n\begin{vmatrix}\na=3 \cdot \sqrt{5}, & b=\frac{-\sqrt{5}}{3}, & c=\frac{5 \cdot \sqrt{5}}{9}\n\end{vmatrix}, \n\begin{vmatrix}\na=3 \cdot \sqrt{5}, & b=\frac{\sqrt{5}}{3}, & c=\frac{-5}{3}\n\end{vmatrix}\n\right\}\n\hline\n\text{Hence } a = \pm 3\sqrt{5}, b = \pm \frac{\sqrt{5}}{3}, c = \pm \frac{5\sqrt{5}}{9}\n\hline\n\text{or} \\
3x^3 + ax^2 + 5x = 3\left(x + \frac{\sqrt{5}}{3}\right)^3 + \frac{5\sqrt{5}}{9}\n\hline\n\end{array}
$$

4 marks

b Letting $f_1(x) = 3(x + b)^3 + c$, and using values from part **a**, where $b < 0$ and $c > 0$, find the *x*-coordinates of the point(s) where $f(x) = 0$.

$$
b < 0 \text{ and } c > 0
$$

\n
$$
f(x) = 3\left(x - \frac{\sqrt{5}}{3}\right)^3 + \frac{5\sqrt{5}}{9}
$$

\n
$$
f(x) = 0 \text{ gives}
$$

\n
$$
\left(x - \frac{\sqrt{5}}{3}\right)^3 = \frac{5\sqrt{5}}{27}
$$

\n
$$
x = -\frac{\sqrt{5}}{3} + \frac{\sqrt{5}}{3}
$$

\n
$$
x = 0
$$

1 mark

c Letting $f_2(x) = 3(x + b)^3 + c$, and using values from part **a**, where $b > 0$ and $c < 0$, find the *x*-coordinates of the point(s) where $f(x) = 0$.

$$
b > 0 \text{ and } c < 0
$$

\n
$$
f(x) = 3\left(x + \frac{\sqrt{5}}{3}\right)^3 - \frac{5\sqrt{5}}{9}
$$

\n
$$
f(x) = 0 \text{ gives}
$$

\n
$$
\left(x + \frac{\sqrt{5}}{3}\right)^3 = \frac{5\sqrt{5}}{27}
$$

\n
$$
x = \frac{\sqrt{5}}{3} - \frac{\sqrt{5}}{3}
$$

\n
$$
x = 0
$$

1 mark

d Hence, find where $f_1(x) = f_2(x)$.

Point of intersection at (0, 0).

1 mark

e Sketch the graphs of $f_1(x)$ and $f_2(x)$ on the same axes, labelling point(s) of intersection.

3 marks

f Sketch the inverse of graph $f_1(x)$ on the same axes, labelling point(s) of intersection.

2 marks (Total: 12 marks)

QUESTION 18

a Find the general solution to the equation $2 \cos(2x) = 1$.

 $cos(2x) = \frac{1}{2}$ $2x = 2n\pi \pm \cos^{-1}\left(\frac{1}{2}\right)$ 2 1 $2x = 2n\pi \pm \frac{\pi}{3}$ $x = n\pi \pm \frac{\pi}{6}, n \in \mathbb{Z}$

2 marks

b Hence, give the first four positive solutions to $\cos(2x) = \frac{1}{2}.$

N	0	1	2
$\frac{\pi}{6} + n\pi$	$\frac{\pi}{6}$	$\frac{7\pi}{6}$	$\frac{\sqrt{3}\pi}{6}$
$-\frac{\pi}{6} + n\pi$	$\frac{\pi}{6}$	$\frac{5\pi}{6}$	$\frac{11\pi}{6}$
Answer: $x = \frac{\pi}{6}$	$\frac{5\pi}{6}$	$\frac{7\pi}{6}$	$\frac{11\pi}{6}$

4 marks

c Sketch the graph of $f(x) = 2 \cos(2x) - 1$ for the domain $x \in [0, 2\pi]$, showing the coordinates of the axial intercepts.

3 marks (Total: 9 marks)

QUESTION 19

The temperature of a cup of tea cools according to the rule *T* = $T_0 \times 2^{-kt}$, where *T* is the temperature in degrees Celsius and *t* is time in hours. The original temperature of the cup of tea is 90°C.

a What is T_0 ?

$$
T_0 = 90^{\circ}\text{C}
$$

1 mark

It takes 30 minutes for the temperature to halve.

b What fraction of the original temperature is the temperature of the cup of tea after 60 minutes?

 $T = T_{0} \times 2^{-kt}$ It takes 30 minutes for the temperature to halve, so $t = \frac{1}{2}$ and $T = \frac{1}{2}T_0$. $\Rightarrow \frac{1}{2}$ $\frac{1}{2}T_0 = T_0 \times 2^{-0.5k}$ $\Rightarrow \frac{1}{2}$ $\frac{1}{2}$ = 2^{-0.5*k*} 2^{-1} = $2^{-0.5k}$ This gives $\frac{1}{2}k = 1$ $k = 2$ After 60 minutes, i.e. at $t = 1$ $T = T_0 \times 2^{-2 \times 1}$ $T = T_0 \times \frac{1}{4}$ 4 The fraction of the original temperature after 60 minutes $=\frac{1}{4}$

3 marks

c What is the temperature of the cup of tea after 60 minutes?

```
Using the result from part b,
T = 90 \times \frac{1}{4} = 22.5^{\circ} \text{C}
```
1 mark

d A different drink's temperature follows the formula $T = T_0 \times 2^{-kt} + 20$, where *T* is the temperature in degrees Celsius and *t* is time in hours. It takes 20 minutes for the temperature to halve and the original temperature of the cup of tea is 90°C. Find the value of *k* in this case, giving your answer correct to 2 decimal places.

 $T = T_0 \times 2^{-kt} + 20$ $t = 0$, gives $T = T_0 + 20$ Original temperature of the cup of tea is 90°C. $90 = T_0 + 20$, so $T_0 = 70$ It takes 20 minutes for the temperature to halve, so $t = \frac{1}{3}$. $\frac{1}{2} \times 90 = 70 \times 2^{-k\frac{1}{3}}$ $\Rightarrow \frac{1}{2}$ $3 + 20$ $45 = 70 \times 2^{-k\frac{1}{3}} + 20$ This gives $k \approx 4.46$ solve $\begin{array}{r} -\frac{k}{3} \\ 45 = 70 \cdot 2 \end{array}$ +20, k $\{k=4.456280482\}$

2 marks

The formula is changed to suit another drink. The graph of $T = T_0 \times 2^{-kt}$ has a sequence of transformations applied to it, in the order given.

- • The graph is translated 15 units in the negative direction of the *t*-axis.
- It is then translated 7 units in the negative direction of the *T*-axis
- It is then dilated by a factor of 5 from the *t*-axis
- It is then dilated by a factor of $\frac{1}{2}$ from the *T*-axis
- • The graph is then reflected in the *T*-axis
- **e** After all these transformations are applied, what is the new rule for $T(t)$?

2 marks (Total: 9 marks)