Functions, graphs and algebra Technology-free end-of-year examination Total marks: 30 Suggested writing time: 45 minutes

Specific instructions to students

- Answer all of the questions in the spaces provided.
- Show all workings in questions where more than one mark is available.
- An exact value must be provided in questions where a numerical answer is required, unless otherwise specified.

QUESTION 1

The graph of *f*: $R^+ \rightarrow R$, $f(x) = \sqrt{x}$ is shown below.

a The graph of $y = \sqrt{x}$ is dilated by a factor of 2 from the *y*-axis to become the graph of *g*. Write down the rule for *g*.

 $g(x) = \sqrt{\frac{x}{2}}$

1 mark

b The graph of $y = \sqrt{x}$ is dilated by a factor of 3 from the *x*-axis to become the graph of *h*. Write down the rule for *h*.

 $h(x) = 3\sqrt{x}$

1 mark

c The graph of $y = \sqrt{x}$ is translated by 4 units in the positive direction of the *x*-axis to become the graph of *j*. Write down the rule for *j*.

 $j(x) = \sqrt{x-4}$

1 mark

d Give the equation of, and add to the diagram given, a sketch of $y = \sqrt{x}$ if it is reflected over the *y*-axis.

2 marks (Total: 5 marks)

QUESTION 2

a For the function $f(x) = x^4 + x^3 - 7x^2 - x + 6$, f(1) = 0 and f(-1) = 0. Find the fully factorised form of f(x).

2 marks

b If g(x) is the graph of f(x) translated 1 unit to the right and dilated by a factor of 3 from the *x*-axis, write down the equation for g(x) in factorised form.

f(x) = (x - 1)(x + 1)(x + 3) (x - 2) g(x) = 3f(x - 1) = 3(x - 1 - 1)(x + 1 - 1)(x + 3 - 1) (x - 2 - 1) g(x) = 3(x - 2)(x)(x + 2) (x - 3)g(x) = 3x(x - 2)(x + 2) (x - 3)

> 2 marks (Total: 4 marks)

QUESTION 3

If $x^2 + 4x + 1 = (x - a)^2 + b$, find the values of *a* and *b*.

 $x^{2} + 4x + 1 = (x^{2} - 2ax + a^{2}) + b = x^{2} - 2ax + a^{2} + b$ Equating coefficients, $4 = -2a \qquad (\text{coefficients of } x^{1})$ $1 = a^{2} + b \qquad (\text{coefficient of } x^{0})$ Hence a = -2, b = -3

2 marks

QUESTION 4

If f(x) = kx, where $k \in \mathbb{R}$, show that f(x) - f(y) = f(x - y).

LHS = f(x) - f(y)= kx - ky= k(x - y)RHS = k(x - y) = LHS

2 marks

QUESTION 5

Simplify the expression $5 \log_2(5) \times \log_5(2)$.

2 marks

QUESTION 6

Evaluate

1 mark

1 mark

c
$$\tan\left(\frac{5\pi}{3}\right)$$

 $\tan\left(\frac{5\pi}{3}\right) = -\sqrt{3}$

1 mark

d $\cos(-9\pi)$

 $\cos(-9\pi) = -1$

1 mark (Total: 4 marks)

QUESTION 7

Solve for *x* in the equation $64^{x-2} \times 4^x = 16$

 $4^{3(x-2)} \times 4^{x} = 4^{2}$ $4^{3x-6} \times 4^{x} = 4^{2}$ $4^{4x-6} = 4^{2}$ Equating indices, 4x - 6 = 2 4x = 8 x = 2

2 marks

QUESTION 8

Solve for *x* in the equation $2 \sin(2x) = -1$, where $x \in [0, 2\pi]$.

3 marks

QUESTION 9

a Find the general solution to the equation $\cos(3x) = \frac{\sqrt{2}}{2}$.

$$3x = 2n\pi \pm \cos^{-1}\left(\frac{\sqrt{2}}{2}\right)$$
$$3x = 2n\pi \pm \frac{\pi}{4}$$
$$x = \frac{1}{3}\left(2n\pi \pm \frac{\pi}{4}\right)$$
$$x = \frac{2n\pi}{3} \pm \frac{\pi}{12} \text{ where } n \in \mathbb{Z}$$

2 marks

b Hence, find all the exact solutions in the interval $(0, \pi)$.

n	0	1
$\frac{2n\pi}{3} + \frac{\pi}{12}$	$\frac{\pi}{12}$	$\frac{9\pi}{12} = \frac{3\pi}{4}$
$\frac{2n\pi}{3} - \frac{\pi}{12}$	$-\frac{\pi}{12}$	$\frac{7\pi}{12}$
Answer: $x = \frac{\pi}{12}$	$\frac{3\pi}{4}, \frac{7\pi}{12}$	

2 marks

c Hence sketch the graph of $y = \cos(3x) - \frac{\sqrt{2}}{2}$, labelling axial intercepts.

2 marks (Total: 6 marks)