TEST 5

Functions, graphs, algebra and calculus Technology-free end-of-year examination Total marks: 30

Suggested writing time: 45 minutes

Specific instructions to students

- Answer all of the questions in the spaces provided.
- Show all workings in questions where more than one mark is available.
- An exact value must be provided in questions where a numerical answer is required, unless otherwise specified.

QUESTION 1

For the function $f(x) = \sqrt{x}$, find $f^{-1}(x)$.

Let
$$y = \sqrt{x}$$
.

Swap *x* and *y* to find the inverse.

$$x = \sqrt{y} \implies y = x^2$$

Domain of $f^{-1}(x)$ = range of $f(x) = [0, \infty)$

Answer:
$$f^{-1}$$
: $[0, \infty) \to R$, $f^{-1}(x) = x^2$

2 marks

QUESTION 2

a For the function $f(x) = \frac{4}{x}$ with a maximal domain, find $f^{-1}(x)$.

Let
$$y = \frac{4}{x}$$

Swap *x* and *y* to find the inverse.

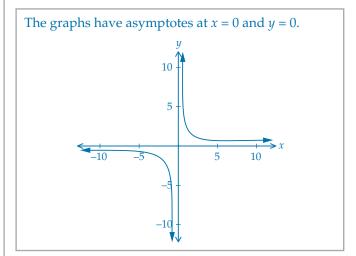
$$x = \frac{4}{y} \implies y = \frac{4}{x}$$

Domain of $f^{-1}(x)$ = range of $f(x) = R \setminus \{0\}$

Answer:
$$f^{-1}$$
: $R \setminus \{0\} \to R$, $f^{-1}(x) = \frac{4}{x}$

2 marks

b Hence, sketch the graphs of f(x) and $f^{-1}(x)$ on the same axes.



2 marks (Total: 4 marks)

QUESTION 3

If $f(x) = 3x - \frac{2}{x}$ and g(x) = x + 2, for f(g(x)) to exist,

determine its rule and domain.

Test if f(g(x)) exists.

Test: $ran(g) \subseteq dom(f)$

 $R \not\subset R \setminus \{0\}$, although it can be restricted to exist.

Require $R \setminus \{0\} \subseteq R \setminus \{0\}$

Restricting ran(g) to $R \setminus \{0\}$ restricts dom (g) to $R \setminus \{-2\}$.

Rule:
$$f(g(x)) = 3(x+2) - \frac{2}{x+2}$$

= $3x + 6 - \frac{2}{x+2}$

Domain $f(g(x)) = \text{dom } g(x) = \mathbb{R} \setminus \{-2\}.$

(This domain can also be noticed from the graph of f(g(x))).

3 marks

QUESTION 4

Given $f: [A, \infty) \to R$, $f(x) = x^2 - 2x + 5$,

a state the least value of A such that f(x) is a one-to-one function.

$$f(x) = x^2 - 2x + 5$$

Complete the square for turning point form.

$$f(x) = x^2 - 2x + 1 - 1 + 5$$
$$= (x - 1)^2 + 4$$

$$A = 1$$

So dom $f = [1, \infty)$.

1 mark

b Hence, find the rule of $f^{-1}(x)$.

Let
$$y = (x - 1)^2 + 4$$

Swap *x* and *y* to find the inverse.

$$x = (y - 1)^2 + 4$$

$$\Rightarrow$$
 $y - 1 = \pm \sqrt{x - 4}$

$$\Rightarrow$$
 $y = \pm \sqrt{x-4} + 1$

Select the upper branch.

$$f^{-1}(x) = \sqrt{x - 4} + 1$$

2 marks

c State the domain and range of $f^{-1}(x)$.

$$\operatorname{dom} f^{-1} = \operatorname{range} f = [4, \infty)$$

$$\operatorname{range} f^{-1} = \operatorname{dom} f = [1, \infty)$$

2 marks (Total: 5 marks)

OUESTION 5

For the function $f(x) = \sqrt{x}$, find f'(x).

$$f(x) = \sqrt{x} = x^{\frac{1}{2}}$$
$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$

2 marks

QUESTION 6

For
$$y = \frac{4}{x}$$
 find $\frac{dy}{dx}$.

$$y = \frac{4}{x} = 4x^{-1}$$

$$\frac{dy}{dx} = -4x^{-2} = -\frac{4}{x^2}$$

2 marks

QUESTION 7

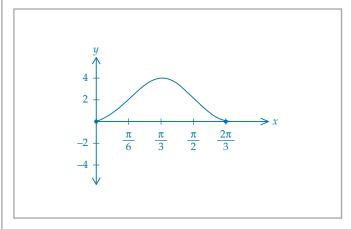
a For the graph of $y = 2 \sin\left(3\left(x - \frac{\pi}{6}\right)\right) + 2$, state the amplitude and period.

$$Amp = 2$$

$$Period = \frac{2\pi}{3}$$

2 marks

b Hence, sketch the graph of $y = 2 \sin\left(3\left(x - \frac{\pi}{6}\right)\right) + 2$, showing one complete cycle.



2 marks (Total: 4 marks)

QUESTION 8

Solve for x in the equation $\tan(x) + 1 = 0$, where $x \in [-\pi, 2\pi]$.

$$\tan (x) + 1 = 0 \implies \tan (x) = -1$$
Reference angle = $\frac{\pi}{4}$

$$x = -\frac{\pi}{4}, \pi - \frac{\pi}{4}, 2\pi - \frac{\pi}{4}$$

$$x = -\frac{\pi}{4}, \frac{3\pi}{4}, \frac{7\pi}{4}$$

3 marks

QUESTION 9

For
$$y = x \left(x^2 - \frac{1}{x} \right)$$
 find $\frac{dy}{dx}$.

$$y = x\left(x^2 - \frac{1}{x}\right) = x^3 - 1$$

$$\frac{dy}{dx} = 3x^2$$

2 marks

QUESTION 10

For
$$y = \sin(x) \left(x^2 - \frac{1}{x}\right)$$
,

a find
$$\frac{dy}{dx}$$

$$y = \sin(x) \left(x^2 - \frac{1}{x} \right)$$

Using the product rule,

$$\frac{dy}{dx} = \left(x^2 - \frac{1}{x}\right)\cos(x) + \sin(x)\left(2x + \frac{1}{x^2}\right)$$

2 marks

b find
$$\frac{dy}{dx}$$
 at $x = \pi$

At
$$x = \pi$$
,

$$\frac{dy}{dx} = \left(\pi^2 - \frac{1}{\pi}\right) \cos(\pi)$$

$$= \frac{1}{\pi} - \pi^2$$

1 mark (Total: 3 marks)