Functions, graphs, algebra and calculus Technology-free end-of-year examination Total marks: 30 Suggested writing time: 45 minutes

Specific instructions to students

- Answer all of the questions in the spaces provided.
- Show all workings in questions where more than one mark is available.
- An exact value must be provided in questions where a numerical answer is required, unless otherwise specified.

QUESTION 1

For the function $f(x) = e^x \sqrt{x}$, find f'(x).

 $f(x) = e^x \sqrt{x} = e^x x^{\frac{1}{2}}$ Using the product rule,

 $f'(x) = x^{\frac{1}{2}}e^{x} + e^{x}\frac{1}{2}x^{-\frac{1}{2}}$ $= \sqrt{x}e^{x} + e^{x}\frac{1}{2\sqrt{x}} = e^{x}\left(\sqrt{x} + \frac{1}{2\sqrt{x}}\right)$

2 marks

QUESTION 2

a For the function $f(x) = e^x x^2$, find f'(x).

$$f(x) = e^x x^2$$

Using the product rule,

$$f'(x) = e^x x^2 + 2e^x x$$

2 marks

b Hence find f'(2).

 $f'(x) = e^{x}x^{2} + 2e^{x}x$ so f'(2) = 4e² + 4e² = 8e²

> 1 mark (Total: 3 marks)

QUESTION 3

a For the function
$$f(x) = \frac{\cos(2x)}{x+2}$$
, find $f'(x)$.

 $f(x) = \frac{\cos(2x)}{x+2}$ Using the quotient rule, $f'(x) = \frac{-2(x+2)\sin(2x) - \cos(2x)}{(x+2)^2}$ **b** Hence find $f'(\pi)$.

$$f'(x) = \frac{-2(x+2)\sin(2x) - \cos(2x)}{(x+2)^2}$$
$$= \frac{-2(\pi+2)\sin(2\pi) - \cos(2\pi)}{(\pi+2)^2}$$
$$= \frac{-1}{(\pi+2)^2}$$

1 mark (Total: 3 marks)

QUESTION 4

a For the function $y = \frac{\sin(2x)}{(x^2 - 2)^2}$, find $\frac{dy}{dx}$.

$$y = \frac{\sin(2x)}{\left(x^2 - 2\right)^2}$$

Using the quotient and chain rules,

$$\frac{dy}{dx} = \frac{2(x^2 - 2)^2 \cos(2x) - \sin(2x) \times 2(x^2 - 2) \times 2x}{(x^2 - 2)^4}$$
$$= \frac{2(x^2 - 2)\cos(2x) - 4x\sin(2x)}{(x^2 - 2)^3}$$

b Hence find $\frac{dy}{dx}$ at $x = \pi$

At
$$x = \pi$$
,

$$\frac{dy}{dx} = \frac{2(\pi^2 - 2)\cos(2\pi) - 4\pi\sin(2\pi)}{(\pi^2 - 2)^3}$$

$$= \frac{2(\pi^2 - 2)}{(\pi^2 - 2)^3} = \frac{2}{(\pi^2 - 2)^2}$$

1 mark (Total: 4 marks)

3 marks

2 marks

QUESTION 5

The volume V(t) litres of liquid in a drum at time t minutes is described by the formula

$$V(t) = 3t^3 + \frac{1}{t}, \ t > 0.$$

a Find the average rate of change of liquid, in litres/min, from t = 1 to t = 2.

Average rate of change =
$$\frac{V(2) - V(1)}{2 - 1}$$

= 24.5 - 4
= 20.5 litres/min

2 marks

b Find the rate of change of liquid, in litres/min, when t = 1.

$$V(t) = 3t^{3} + \frac{1}{t} = 3t^{3} + t^{-1}$$
$$V'(t) = 9t^{2} - t^{-2} = 9t^{2} - \frac{1}{t^{2}}$$
$$V'(1) = 9 - 1 = 8 \text{ litres/min}$$

2 marks

c Find at what time, in mins, there is a minimum amount of liquid in the drum.

Let $V'(t) = 9t^2 - \frac{1}{t^2} = 0$ for minimum. $9t^2 = \frac{1}{t^2}$ $t^4 = \frac{1}{9}$ Select the +ve solution. $t = \frac{1}{\sqrt{3}}$ mins (can see from the graph that this is a minimum)

2 marks (Total: 6 marks)

QUESTION 6

The equation of a graph is $f(x) = 2x^3 + 1 - kx^2$, where *k* is a constant.

The tangent to the graph at x = 1 meets the *x*-axis at the point (2, 0). Find the value of *k*.

 $f(x) = 2x^{3} + 1 - kx^{2}$ $\Rightarrow f(1) = 3 - k$ $f'(x) = 6x^{2} - 2kx$ $\Rightarrow f'(1) = 6 - 2k$ The equation of the tangent using $y - y_{1} = m(x - x_{1})$ is: y - (3 - k) = (6 - 2k)(x - 1)At the point (2, 0), 0 - (3 - k) = (6 - 2k)(2 - 1) $\Rightarrow -3 + k = 6 - 2k$ This gives k = 3.

3 marks

QUESTION 7

a The graph of $y = \frac{x^3}{3} - \frac{x^2}{4} + ax + b$ has a stationary point at $\left(2, \frac{2}{3}\right)$. Find the values of *a* and *b*.

$$y = \frac{x^3}{3} - \frac{x^2}{4} + ax + b$$

Substituting $\left(2, \frac{2}{3}\right)$ gives
 $\frac{2}{3} = \frac{8}{3} - \frac{4}{4} + 2a + b$
So $2a + b = -1$
Also, $\frac{dy}{dx} = x^2 - \frac{x}{2} + a$
 $x^2 - \frac{x}{2} + a = 0$ at $x = 2$.
So $3 + a = 0$
 $\therefore a = -3, b = 5$

3 marks

b Hence, find the *x*-coordinate of the other stationary point.

 $y = \frac{x^3}{3} - \frac{x^2}{4} - 3x + 5$ $\frac{dy}{dx} = x^2 - \frac{x}{2} - 3 = 0$ for stationary points $2x^2 - x - 6 = 0$ $(2x + 3)(x - 2) = 0 \text{ gives } x = 2 \text{ and } x = -\frac{3}{2}$ Other stationary point: $x = -\frac{3}{2}$

2 marks (Total: 5 marks)

QUESTION 8

a For the function $y = \frac{e^{3x}}{\sin(3x)}$, find an expression for $\frac{dy}{dx}$.

$$y = \frac{e^{3x}}{\sin(3x)}$$

Using the quotient rule,
$$\frac{dy}{dx} = \frac{\sin(3x) \times 3e^{3x} - e^{3x} \times 3\cos(3x)}{\sin^2(3x)}$$
$$= \frac{3\sin(3x)e^{3x} - 3\cos(3x)e^{3x}}{\sin^2(3x)}$$

2 marks

b Hence, find
$$\left\{ x : \frac{dy}{dx} = 0 \right\}$$
 for $x \in \left[0, \frac{\pi}{2} \right]$.

$$\frac{3\sin(3x)e^{3x} - 3\cos(3x)e^{3x}}{\sin^2(3x)} = 0$$

$$\Rightarrow 3e^{3x}\sin(3x) - 3e^{3x}\cos(3x) = 0$$

$$\Rightarrow 3e^{3x}(\sin(3x) - \cos(3x)) = 0$$

No solution for $3e^{3x} = 0$.
 $\therefore \sin(3x) - \cos(3x) = 0$
 $\sin(3x) = \cos(3x)$
 $\tan(3x) = 1$
 $3x = \frac{\pi}{4}, \pi + \frac{\pi}{4} = \frac{\pi}{4}, \frac{5\pi}{4}$
 $x = \frac{\pi}{12}, \frac{5\pi}{12}$

2 marks (Total: 4 marks)