

Units 3 and 4 Maths Methods (CAS): Exam 1

Practice Exam Solutions

Stop!

Don't look at these solutions until you have attempted the exam.

Any questions?

Check the Engage website for updated solutions, then email practiceexams@ee.org.au.

Marks allocated are indicated by a number in square brackets, for example, [1] indicates that the line is worth one mark.

Question 1a

 $\frac{d}{dx}(xlog_e(x)) = \frac{d}{dx}x \times log_e(x) + x \times \frac{d}{dx}log_e(x)$ [1] = $log_e(x) + x\frac{1}{x} = 1 + log_e(x)$ [1]

Question 1b

 $\begin{aligned} \int_{1}^{2} \log_{e}(x) \, dx &= \int_{1}^{2} [1 + \log_{e}(x)] \, dx - \int_{1}^{2} (x) \, dx \, [1] \\ &= [x \log_{e}(x)]_{1}^{2} - [x]_{1}^{2} = 2 \log_{e}(2) - 1 \, [1] \end{aligned}$

Question 2

 $\mu = np = 5, \sigma^2 = np(1-p) = 4 [1]$ $\frac{\sigma^2}{\mu} = 1 - p = \frac{4}{5} \Rightarrow p = \frac{1}{5} [1]$ $n = \frac{\mu}{p} = 25 [1]$

Question 3

 $f(x) = |x^{2}(x^{2} - 1)| = \begin{cases} x^{4} - x^{2}, & x < -1 \text{ or } x > 1 \\ x^{2} - x^{4}, & -1 \le x \le 1 \end{cases}$ $f'(x) = \begin{cases} 4x^{3} - 2x, & x < -1 \text{ or } x > 1 \\ 2x - 4x^{3}, & -1 \le x \le 1 \end{cases} = 0 \text{ at stationary points [1]}$ for x < -1 or x > 1, $(4x^{2} - 2) = 0 \Rightarrow x = 0, \pm \frac{1}{\sqrt{2}}$ none of which lie within x < -1 or x > 1for $-1 \le x \le 1$, $x(2 - 4x^{2}) = 0 \Rightarrow x = 0, \pm \frac{1}{\sqrt{2}}$ [1] \therefore we have stationary points at $(0,0), (\frac{1}{\sqrt{2}}, \frac{1}{4}), (-\frac{1}{\sqrt{2}}, \frac{1}{4})$ [1] sign diagrams may be used to show that (0,0) is a local minimum, others are local maxima [1]

Question 4a

 $log_e 2 = log_2 x = \frac{log_e x}{log_e 2} [1]$ $\Rightarrow log_e x = [log_e 2]^2$ $\Rightarrow x = e^{[log_e 2]^2} [1]$

Question 4b

 $25^{x} - 5^{x+1} + 6 = 0$ $\Rightarrow (5^{x})^{2} - 5(5^{x}) + 6 = 0 [1]$ $\Rightarrow (5^{x} - 2)(5^{x} - 3) = 0$ $\Rightarrow 5^{x} = 2 \text{ or } 3 [1]$ $\therefore x = \log_{5} 2 \text{ or } \log_{5} 3 [1]$

Question 5

For infinite solutions, the lines described by the equations must be parallel [1]

So: $\frac{3k}{3} = \frac{k}{1} = \frac{6}{k-1} [1]$ $\Rightarrow k(k-1) = 6 \Rightarrow k^2 - k - 6 = 0 \Rightarrow (k-3)(k+2) = 0$ $\therefore k = -2 \text{ or } 3 [2]$

Question 6a

 $2\sin\left(x + \frac{\pi}{2}\right) + 1 = 0$ $\sin\left(x + \frac{\pi}{2}\right) = -\frac{1}{2}[1]$ $x + \frac{\pi}{2} = \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}$ $x = \frac{2\pi}{3} \text{ or } \frac{4\pi}{3}[2]$

Question 6b

$$x = \frac{2\pi}{3} - \frac{\pi}{3} \text{ or } \frac{4\pi}{3} - \frac{\pi}{3} = \frac{\pi}{3} \text{ or } \pi \text{ [1]}$$

Question 7

Curves intersect where $ax = x^2 \Rightarrow x(x-a) = 0 \Rightarrow x = 0, a$ [1] $\int_0^a ax - x^2 dx = \left[\frac{1}{2}ax^2 - \frac{1}{3}x^3\right]_0^a = \frac{1}{2}a^3 - \frac{1}{3}a^3 = \frac{1}{6}a^3 = \frac{9}{2}$ [2] $\Rightarrow a^3 = 27$ $\Rightarrow a = 3$ [1]

Question 8

 $\frac{dV}{dt} = 10 [1]$ $V = \frac{4}{3}\pi r^{3} \Rightarrow \frac{dV}{dr} = 4\pi r^{2} = 100\pi \text{ cm}^{3}/\text{cm when } r = 5 \text{ cm [1]}$ $\frac{dr}{dt} = \frac{dr}{dV}\frac{dV}{dt} [1]$ $= \frac{1}{100\pi}\frac{10}{1} = \frac{1}{10\pi} \text{ cm/s [1]}$

Question 9

Shape of *f* and *g* correct (*g* is given by *f* reflected in both axes) [1] Shape of f + g similar to $y = x^3$ [1] with intercept at (0,0) [1] and no stationary points [1]

Question 10a

area $\approx \frac{1}{2} \frac{1}{2^2} + \frac{1}{2} \frac{1}{2.5^2} [1]$ = $\frac{1}{2} \left(\frac{1}{4} + \frac{4}{25} \right) = \frac{1}{2} \left(\frac{25}{100} + \frac{16}{100} \right) = \frac{1}{2} \frac{41}{100} = 0.205 [1]$

Question 10b $\int_{2}^{3} \frac{1}{x^{2}} dx = \left[-\frac{1}{x}\right]_{2}^{3} = -\frac{1}{3} + \frac{1}{2} = \frac{1}{6} [1]$

Question 10b

Larger: $\frac{1}{x^2}$ is a decreasing function of x over [2,3] hence left rectangles will overestimate the area under the curve on this interval. [1]