

YEAR 12 Trial Exam Paper

2015

MATHEMATICAL METHODS (CAS)

Written examination 2

Worked solutions

This book presents:

- worked solutions, giving you a series of points to show you how to work through the questions
- \succ mark allocations
- tips on how to approach the questions

This trial examination produced by Insight Publications is NOT an official VCAA paper for the 2015 Mathematical Methods (CAS) 2 written examination.

The Publishers assume no legal liability for the opinions, ideas or statements contained in this trial exam.

This examination paper is licensed to be printed, photocopied or placed on the school intranet and used only within the confines of the purchasing school for examining their students. No trial examination or part thereof may be issued or passed on to any other party including other schools, practising or non-practising teachers, tutors, parents, websites or publishing agencies without the written consent of Insight Publications.

Copyright © Insight Publications 2015

SECTION 1

Question 1

Answer is E.

Worked solution

The function $y=1+\sqrt{a-x}$ is defined for $a-x \ge 0$, so $x \le a$.

Question 2

Answer is D.

Worked solution

f(1) = -2 f(-2) = 10 f'(1) = -3and f'(3) = -36.

In equation form, this can be written as:

a+b+c+d = -2-8a+4b-2c+d = 10 3a+2b+c = -3 27a+6b+c = -36 which gives $\begin{bmatrix} 1 & 1 & 1 & 1 \\ -8 & 4 & -2 & 1 \\ 3 & 2 & 1 & 0 \\ 27 & 6 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} -2 \\ 10 \\ -3 \\ -36 \end{bmatrix}.$

Answer is E.

Worked solution

A sample graph with a = -4 shows

Hence, for x < 0, f'(x) > 0.

Answer is D.

Worked solution

The graph $f(x) = |x^2 + ax|$ has x-intercepts at (0,0) and (-a,0) and a turning point at $x = -\frac{a}{2}$, as shown below.

The gradient is positive for $x \in \left(-a, -\frac{a}{2}\right) \cup (0, \infty)$.

Answer is B.

Worked solution

$$\int_{2}^{4} (2+5f(x)) dx = \int_{2}^{4} 2 dx + 5 \int_{2}^{4} f(x) dx$$
$$= [2x]_{2}^{4} + 5 \times 3$$
$$= (8-4) + 15$$
$$= 19$$

Question 6

Answer is A.

Worked solution

$$\int_{0}^{1} \frac{2x^{2}}{k} dx = \frac{1}{k} \int_{0}^{1} 2x^{2} dx$$
$$= \frac{1}{k} \left[\frac{2x^{3}}{3} \right]_{0}^{1}$$
$$= \frac{2}{3k}$$
So, $\frac{2}{3k} = 1$
$$k = \frac{2}{3}$$

Question 7

Answer is C.

Worked solution

Owing to the symmetry of the distribution, the mean, median and mode occur concurrently at x = 3.

Answer is C.

Worked solution

$$\Pr(X < 2.5 | X < 3) = \frac{\Pr(X < 2.5)}{\Pr(X < 3)}$$

Question 9

Answer is A.

Worked solution

Expanding the matrix gives

$$\begin{array}{c} x' = -3x - \pi \\ y' = 2y - 2 \end{array} \right\} \Rightarrow \begin{array}{c} x = \frac{x' + \pi}{-3} \\ y = \frac{y' + 2}{2} \end{array}$$

So $y = \sin(3x)$ becomes

$$\frac{y+2}{2} = \sin(-x-\pi)$$
$$y = 2\sin(-x-\pi) - 2$$

Answer is D.

Worked solution

The graph of y = 5x - 3 undergoes the transformation 1 + f(x + 2), so

y = (5(x+2)-3)+1 = 5x+8

Question 11

Answer is E.

Worked solution

Using the quotient rule gives $g(x) = \frac{f(x)}{e^x}$, so $g'(x) = \frac{e^x f'(x) - e^x f(x)}{(e^x)^2} = \frac{f'(x) - f(x)}{e^x}$.

Question 12

Answer is E.

Worked solution

 $X \sim Bi(n = 10, p = 0.3)$ Pr(X > 2) =

🗢 Edit Action Interactive 🛛 🖂					
0.5 1 ₽2 ↔	►	Simp	<u>fdx</u>	• [++	v >
.1562	57.5				
				0.31	25
simplif	y(5(x	+2)-3	3+1)		
				5•x	+8
binomia	alPDf (2,10,	0.3)		
		0	. 233	47444	.05
binomia	alCDf (3,10,	10,0	.3)	
		0	.617	21721	36 🔽
Math1	Line	-	√∎	π	Þ
Math2	0	e	ln	log _∎ □	V
Math3		X ²	X ⁻¹	log ₁₀ (II)	solve(
Trig		toDMS	{	{}	()
Var		000011160			· · ·
abc	sin	COS	tan		
A V	ŧ		4	ans	EXE
Alg	Decima	al	Real	Rad	(11)

Question 13 *Answer is D.* Worked solution

The graph has been reflected in both the *x*- and *y*-axes. The matrix $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ produces reflections in both axes.

Question 14

Answer is D.

Worked solution

The graph of g(f(x)) shows that the lowest point occurs at x = 0, $y = \log_e 3$.

The range is $[\log_e 3, \infty)$.

Answer is C.

Worked solution

The rate of change for this function is
$$\begin{cases} -2 & \text{for } x < \frac{-1}{2} \\ 2 & \text{for } x > \frac{1}{2} \end{cases}$$

Question 16

Answer is D.

Worked solution

For the inverse function to exist, the function must be one-to-one. The graph shows that the

function is one-to-one for $x \in [0, \frac{\pi}{3}]$.
🗢 File Edit Type 🔶 🛛 🖂
₩
Sheet1 Sheet2 Sheet3 Sheet4 Sheet5
▼y21=cos(3•x-π) →
y22:0
y23:0
□y24:□
y 25:0
y26:0
y27:0
x 1.0472 5.23599 8 8 7 8
Rad Real (11)

Hence, $a = \frac{\pi}{3}$.

Answer is C.

Worked solution

For
$$4.2^{\frac{3}{2}}$$
, $x = 4$, $h = 0.2$, $f(x) = x^{\frac{3}{2}}$ and $f'(x) = \frac{3}{2}\sqrt{x}$.
So, $f(4+h) \approx f(4) + hf'(4)$
 $= 4^{\frac{3}{2}} + 0.2 \times \frac{3}{2} \times \sqrt{4}$
 $= 8 + 0.6$
 $= 8.6$

Question 18

Answer is C.

Worked solution

The graph shows that there are two points where it intersects with the line y = 1.

Answer is A.

Worked solution

The graph of $y=1-e^{(x+3)}$ shows the region is below the x-axis.

Answer is D.

Worked solution

🜣 Edit Zoom Analysis 🔶	X
	►
Sheet1 Sheet2 Sheet3 Sheet4 Sheet5	
▼ y21=ln(x+1)	
y22:0	
□y23:□	
□ y24:□	
y25:0	
□ y26:□	_
y27:0	Υ.
4 9	
3-	
2	
	_ <u>×</u>
E Contra	
Rad Real	(111)

The right rectangles have heights of: $\log_e(1+1)$, $\log_e(2+1)$, $\log_e(3+1)$, $\log_e(4+1)$ i.e. $\log_e(2)$, $\log_e(3)$, $\log_e(4)$, $\log_e(5)$. So the area is $\log_e(2) + \log_e(3) + \log_e(4) + \log_e(5) = \log_e(120)$.

Answer is B.

Worked solution

The distance is the area under the velocity–time graph. There is an *x*-intercept at x = 3, so the area is calculated in two parts as:

$$\int_{0}^{3} (4.5 - \frac{1}{2}t^{2}) dt - \int_{3}^{6} (4.5 - \frac{1}{2}t^{2}) dt$$

= 18 + 9 = 27

Question 22

Answer is E.

Worked solution

$$f^{-1}(x) = e^x \neq \frac{1}{\log_e(x)}$$

THIS PAGE IS BLANK

SECTION 2

Question 1a.

Worked solution

Using CAS:

So, x = 2.0003.

Mark allocation: 1 mark

• 1 mark for 2.0003

• Be sure to answer to the correct number of decimal places.

Question 1b. Worked solution

Mark allocation: 2 marks

- 1 mark for the drawing the shape and asymptote correctly
- 1 mark for labelling the *x*-intercept correctly

• When sketching a graph, always state the equation of any asymptotes and the coordinates of any intercepts.

Question 1c. Worked solution

The domain of *h* is $(2, \infty)$.

Mark allocation: 1 mark

• 1 mark for $(2,\infty)$

• The domain of the added function is the domain of $g \cap f$. The location of the vertical asymptote is maintained so the domain is strictly greater than 2.

Question 1d.i.

Worked solution

$$\frac{d}{dx}(x+2-\frac{1}{2}\log_e(x-2)) = \frac{(2x-5)}{2(x-2)}$$
, as determined from CAS.

Contractive Edit Action Interactive							
	► [dx] ∫dx	Simp	<u>ſdx</u>	• ₩	T		
$\frac{\mathrm{d}}{\mathrm{d}x}(x+25\ln(x-2))$							
			<u>0.5</u> .	<u>(2•x–</u> x–2	<u>5)</u>		
					-		
Math1	Line	-	V	π	Þ		
Math2		e	ln	i	90		
Math3		$\frac{d}{d}$			lim		
Trig	[[]]			Σ□	Π□		
Var	sin	COS	tan	θ	t		
abc		000	*****				
	+			ans	EXE		
Alg	Decima	al	Real	Rad	(11)		

Mark allocation: 1 mark

• 1 mark for the correct answer

• *Remember to use CAS – the question is worth only 1 mark and does not require working to be shown.*

Question 1d.ii.

Worked solution

$$\frac{d}{dx}(x+2-\log_e(x-2)) = \frac{(2x-5)}{2(x-2)}$$

Let $h'(x) = 0$:
 $2x-5=0$
 $x = 2.5$

Mark allocation: 2 marks

- 1 mark for getting 2x-5=0
- 1 mark for the correct answer

• This question is worth 2 marks so a 'thinking step' needs to be shown. It is enough to simply state h'(x) = 0 and then give the answer.

Question 1e.

Worked solution

🗢 Edit Action Interactive 🛛 🖂							
$ \stackrel{0.5}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$							
solve	X-	-2	-=0,3	ŋ			
				{x=2.	5}		
x+2	5ln(x-	·2) x:	=2.5				
			4.84	46573	59		
x+2	5ln (x-	·2) x=	=2.5	- (2)	0		
			1	$\frac{n(2)}{2}$	$+\frac{3}{2}$		
þ							
Con the	-	_					
Math1	Line			π	Þ		
Math1 Math2	Line Define	f	√■ g	π i	⇒ ∞		
Math1 Math2 Math3	Line Define solve(f dSlv	√ ■ 8	π i	¢ 00		
Math1 Math2 Math3 Trig	Line Define solve(f dSlv	√■ 8 ,	π i {:::::::::::::::::::::::::::::::::::	¢ ∞ 		
Math1 Math2 Math3 Trig Var	Line Define solve(< solve(f dSlv > ≥	√■ 8 , () =	π {=;::: { } ≠	* * []		
Math1 Math2 Math3 Trig Var abc	Line Define solve(< 	f dSlv ≻ ≥	√■ 8 , () =	π i {::::::::::::::::::::::::::::::::::	 ⇒ ∞ I [] ∠ 		
Math1 Math2 Math3 Trig Var abc	Line Define solve(< solve(f dSlv ≻ ≥	√■ 8 () =	π i {≣;:: { } ≠ ans	 ⇒ ∞ I [] ∠ EXE 		

Min distance =
$$\frac{1}{2}\log_e(2) + \frac{9}{2}$$

Mark allocation: 1 mark

• 1 mark for the correct answer

Question 2a.i.

Worked solution

$$h(x) = \sin(x) + 1$$
$$g(x) = e^{\frac{x}{20}}$$

Mark allocation: 2 marks

• 1 mark for each correct answer

Question 2a.ii.

Worked solution

For g(h(x)) to exist: Range of $h(x) \subseteq$ domain of g(x)Range of h(x) = [0,2]Domain of g(x) = RSo, range of $h(x) \subseteq$ domain of g(x). $\therefore g(h(x))$ exists.

Mark allocation: 1 mark

• 1 mark for the correct answer with the correct reasons

Question 2b.

Worked solution

Using CAS:

C Edit Action Interactive							
$ \stackrel{0.5}{\xrightarrow{1}} 1 \qquad $							
$\frac{d}{dx}\left(\sin\left(e^{\frac{x}{20}}\right)_{+1}\right)$							
	$\frac{\cos\left(\frac{x}{20}\right) \cdot e^{\frac{x}{20}}}{20}$						
Math1	Line	-	√■	π	•		
Math1 Math2	Line		√ ■ ln	π i	¢ 8		
Math1 Math2 Math3		e"	√∎ In d⊡	$\frac{\pi}{i}$	⇒ ∞ lim		
Math1 Math2 Math3 Trig			√■ In 	π i ∫	► * * * * * * * * * * * * * * * * * * *		
Math1 Math2 Math3 Trig Var	Line	••• ••• • <u>d</u> •• •••	√■ In 	π i ∫	 ♦ 8 Iim 10 11 11 11 11 11 11 11 12 12 13 14 		
Math1 Math2 Math3 Trig Var abc	Line		√■ In 	$\frac{\pi}{\int_{-}^{0}}$			
Math1 Math2 Math3 Trig Var abc	Line Line Imi Imi Imi Imi Imi Imi Imi Imi Imi Im		√■ ln d0 () tan	π i 5 			

$$\frac{d}{dx}(\sin(e^{\frac{x}{20}})+1) = \frac{e^{\frac{x}{20}}\cos(e^{\frac{x}{20}})}{20}$$

Mark allocation: 1 mark

• 1 mark for the correct answer

Question 2c.

Worked solution

Using CAS:

Edit Action Interactive						
$ \begin{array}{c c} 0.5 \\ \hline \bullet \\ \bullet \\ \bullet \\ \end{array} \end{array} \begin{array}{c c} fdx \\ fdx \\ \bullet \\ $						
$\frac{\frac{\cos\left(\frac{x}{e^{\frac{x}{20}}}\right) \cdot e^{\frac{x}{20}}}{20}}{20}$ simplify (fMin $\left(\sin\left(\frac{x}{e^{\frac{x}{20}}}\right) + 1, x, \cdot\right)$ $\left\{$ MinValue=0, x=20 \cdot \ln\left(\frac{3 \cdot \pi}{2}\right) \right\}						
-			_			
maun	Line		√■	π	⇒	
Math2		e	ln	i	90	
Math3		$\frac{d}{d = 0}$	$\frac{d^{0}}{dt}$	\int_{a}^{a}	lim	
Trig	r m	[]]		Σ□		
Var		101	[00]	-		
abc	sin	COS	tan	θ	t	
× •	+	Ē	4	ans	EXE	
Alg	Standa	ard	Real	Rad	(11)	

The first point on the base level occurs at $x = 20 \log_e \left(\frac{3\pi}{2}\right)$.

Mark allocation: 1 mark

• 1 mark for the correct answer

• To find the coordinates of the first point, specify the restriction on the domain. It is apparent from the graph given that the first minimum occurs in the domain [30,35], so request CAS to find the point in this domain using $|30 \le x \le 35|$ in the solve command.

Question 2d.i. Worked solution

C Edit Action Interactive							
◄ (fMi	n (sin (e ²⁰)	+1, x,	,0,35	;h 🗅		
-{M	linValue	e=0, x	=20 • lı	$n\left(\frac{3\cdot\pi}{2}\right)$)}		
simplif	y (fMa	x_{sin}	$e^{\frac{x}{20}}$) +1, x			
{Max\	/alue=2	2, x=2	$0 \cdot \ln \left(\frac{2}{3}\right)$	₹ <u>2</u>), x=	•		
þ							
D Math1	Line	-	√■	π			
D Math1 Math2	Line		√■ ln	π i	¢		
Math1 Math2 Math3		e"	√∎ In d□	$\frac{\pi}{i}$	 ⇒ ∞ lim ⇒ 		
Math1 Math2 Math3 Trig		e• d	√■ In 	π i ∫	 ⇒ ∞ lim ⇒ □ 		
Math1 Math2 Math3 Trig Var	Line IIII IIII Sin	e d d cos	√■ In [π i \int_{-}^{0}			
Math1 Math2 Math3 Trig Var abc	Line	e" dd dd cos	√∎ In de In In In In In In In In In In In In In	π i ∫ Θ	$\begin{array}{c} \Rightarrow \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$		

The maximum height is 2 metres.

Mark allocation: 1 mark

• 1 mark for the correct answer

Question 2d.ii.

Worked solution

Ð. Edit Action Interactive Idx Simp 0.5 1 dh► Ŧ $(_{\text{fMin}}(\sin(e^{20})+1, x, 0, 35))$ $\left\{ \text{MinValue=0, x=20} \cdot \ln\left(\frac{3 \cdot \pi}{2}\right) \right\}$ simplify (fMax sin $= axValue=2, x=20 \cdot ln\left(\frac{\pi}{2}\right), x=20$ D Math1 Line -√∎ π ⇒ Math2 D^{EE} e■ i ln 00 Math3 $\frac{d}{d}$ lim ∎→□ <u>____</u> Trig $[\square]$ [88] Πœ [[]] Σœ Var \sin COS tan θ t abc Ē. G EXE ans Ŧ Alg Standard Real Rad Q. Edit Action Interactive 0.5 <u>1</u> ■2 (h)► fdx Simp fdx w. $(_{(fMin}(sin(e^{20})+1,x,0,35)))$ $\left\{ \text{MinValue=0, x=20} \cdot \ln\left(\frac{3 \cdot \pi}{2}\right) \right\}$ simplify (fMax $< x=20 \cdot \ln\left(\frac{5 \cdot \pi}{2}\right)$, x=20 · ln Þ Math1 -Line √∎ π ⇒ Math2 D. e■ i ln 00 Math3 d d∎□ d∎ d∎□ /□ lim ∎≯□ Trig [[]] [88] Σ ĬО Var tan θ \sin COS t abc Ē. G ans EXE -٧

Edit Action Interactive Ċ, Idx Simp 0.5 1 A. Ŧ $(fMin(sin(e^{20})+1, x, 0, 35))$ $\left\{ \text{MinValue=0, x=20} \cdot \ln\left(\frac{3 \cdot \pi}{2}\right) \right\}$ simplify (fMax $\sqrt{\ln\left(\frac{\pi}{2}\right)}, x=20 \cdot \ln\left(\frac{\pi}{2}\right)$, x=20 🕨 h Math1 Line 름 √∎ ⇒ π Math2 e■ i ln 00 Math3 $\frac{d}{d}$ <u>____</u> lim ∎≯□ Trig [[]] [8] Σœ ĬО Var θ \sin COS tan t abc Ę. G EXE ans -Ŧ Alg Standard Real Rad

So, this maximum height of 2 m occurs at

$$x = 20\log_e\left(\frac{\pi}{2}\right), \ x = 20\log_e\left(\frac{5\pi}{2}\right), \ x = 20\log_e\left(\frac{9\pi}{2}\right).$$

Mark allocation: 2 marks

- 1 mark awarded for giving only one correct value
- 2 marks awarded for all three correct values

Remember: an exact value is required here! Be sure to be in standard mode and to help with getting a simplified answer, put the simplify command in your CAS calculation.

Standard

Real

Rad

Alg

Question 2e.

Worked solution

This horizontal cross-section height is the average value of the function.

Average height =
$$\frac{1}{20\log_e\left(\frac{11\pi}{2}\right)} \int_0^{20\log_e\left(\frac{11\pi}{2}\right)} \left(\sin(e^{\frac{x}{20}}) + 1\right) dx$$

Using CAS, this is:

So, the average height is 1.22 metres.

- 1 mark for writing the average value $\frac{1}{20\log_e\left(\frac{11\pi}{2}\right)} \int_{0}^{20\log_e\left(\frac{11\pi}{2}\right)} \left(\sin(e^{\frac{x}{20}}) + 1\right) dx$
- 1 mark for the correct answer of 1.22

Question 2f. Worked solution

The gradient of the pole is -10, which means the gradient of the curve is $\frac{1}{10}$.

So, we need to find
$$\left\{ x : f'(x) = \frac{1}{10}, \text{ for } x \in [30, 40] \right\}$$
.

Using CAS gives:

```
Edit Action Interactive
 Q.
            fdx Simp fdx
0.5 1
       dh►.
                                  z
                                        sin►
          11 \cdot \pi
                     0
 20•ln
                           1.220391032
              \sin\left(e^{\frac{X}{20}}\right)
solve
                                    0.1.
{x=32.64035003, x=40.5293
Ο
 Math1
           Line
                     8
                            \sqrt{1}
                                     π
                                             ⇒
 Math2
             0
                     e■
                             ln
                                      i
                                             00
 Math3
                    d∎
d∎
                            \frac{d^{\Box}}{d \blacksquare}
                                    <u>____</u>
                                            lim
∎≯□
            Trig
                           [88]
                                            <u>I</u>–
           [[]]]
                   [\blacksquare]
                                    Σc
  Var
                                     θ
                                              t
            \sin
                            tan
                    COS
  abc
                    E<sub>b</sub>
                            몁
                                            EXE
             4
                                    ans
      ٧
Alg
                                   Rad
                                                (111)
           Standard
                           Real
```

The pole is inserted at x = 32.64035 metres.

Using CAS, we must find the equation of the normal to the curve at this point. Equation of normal is y = -10x + 326.48314.

Edit Action Interactive 0.5 1 b fdx Simp fdx ₩ Ŧ normal(sin(e²⁰/+1,x,32.64) -10.0000002·x+326.4831454 $\overline{20}$ +1, x, 32.64 normal -10.0000001+x+326.4831393 solve(-10.00000001+x+326.4► {x=32.6483139} Ο Math1 Line 름 √∎ ⇒ π Math2 0 e■ i ln 00 Math3 $\frac{d^{\Box}}{d \blacksquare}$ d∎ d∎ ∫____ lim ∎→□ Trig [[]] $[\square]$ [88] Σ---10 Var \sin COS tan θ t abc Ę. Pa EXE ans Ŧ Alg Decimal Real Rad

The pole reaches the base level at y = 0. So, -10x + 326.48314 = 0

$$x = 32.6483$$

 $\therefore x = 32.648 \text{ m}$

Mark allocation: 3 marks

- 1 mark for setting $f'(x) = \frac{1}{10}$
- 1 mark for finding the equation of the normal
- 1 mark for the correct answer

• *Remember: when asked to write an answer correct to 3 decimal places, always work to more decimal places and then round at the last step.*

Question 3a.i Worked solution

Using similar triangles:

Mark allocation: 1 mark

• 1 mark for using similar triangles method

Question 3a.ii.

Worked solution

$$V_{\text{cone}} = \frac{1}{3}\pi r^2 h$$
$$= \frac{1}{3}\pi \frac{h^2}{9}h$$
$$V = \frac{\pi h^3}{27}$$

Mark allocation: 1 mark

• 1 mark for substituting correctly into the formula to get $V = \frac{\pi h^3}{27}$

Question 3b.

Worked solution

$$\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV}$$
$$\frac{dV}{dt} = \frac{4\pi}{9}$$
$$V = \frac{\pi h^3}{27} \implies \frac{dV}{dh} = \frac{\pi h^2}{9}$$
$$\therefore \frac{dh}{dV} = \frac{9}{\pi h^2}$$
$$\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV}$$
$$= \frac{4\pi}{9} \times \frac{9}{\pi h^2} = \frac{4}{h^2}$$

Mark allocation: 2 marks

- 1 mark for the rate equation $\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV}$ 1 mark for finding $\frac{dh}{dV} = \frac{9}{\pi h^2}$

Question 3c.i.

Worked solution

When
$$h = 2$$
, $\frac{dh}{dt} = \frac{4}{(2)^2} = 1$ cm/min.

Mark allocation: 1 mark

• 1 mark for the correct answer

Remember to give the units. •

Question 3c.ii. Worked solution

Let
$$\frac{dh}{dt} = \frac{1}{2}$$
.
 $\frac{4}{h^2} = \frac{1}{2}$
 $h^2 = 8$
 $\therefore h = 2\sqrt{2}$ cm

Mark allocation: 1 mark

• 1 mark for the correct answer

Question 3d.i.

Worked solution

$$\frac{dh}{dt} = \frac{4}{h^2}$$
$$\therefore \frac{dt}{dh} = \frac{h^2}{4}$$

Mark allocation: 1 mark

• 1 mark for the correct answer

Question 3d.ii.

Worked solution

$$t = \int \frac{h^2}{4} dh$$
$$t = \frac{h^3}{12} + c$$

When t = 0, h = 0, so c = 0.

$$t = \frac{h^3}{12}$$
$$\therefore h = \sqrt[3]{12t}$$

Mark allocation: 1 mark

• 1 mark for the correct answer, which must include + c

Question 3e.i.

Worked solution

d = 36 - 1.5t

Mark allocation: 1 mark

• 1 mark for the correct expression

Quesiton 3e.ii.

Worked solution

Let h = d, giving:

 $\sqrt[3]{12t} = 36 - 1.5t$

Using CAS to solve for *t*, we get:

ΦE	🗢 Edit Action Interactive 🖂						
0.5 <u>1</u> ₽2	0.5 1 (h) fdx→ Simp fdx/ ▼ ↓↓ ▼						
solve	solve $\left(\frac{1}{12 \cdot t} \right)^{\frac{1}{3}} = 36 - 1.5 \cdot t, t \right)$						
			{t=1	9.86	32774	7}	
		$\frac{1}{2}$					
(12•	t)	³ t=1	19.86	6277			
				6.20	05837	47	
		$\frac{1}{2}$				_	
(12-	t)	3 t=)	19.86	6277		V	
Math	1	Line	-	√■	π	Þ	
Math	2	Define	f	g	i	90	
Math	3	solve(dSlv	•	{8;8	Ι	
Trig $\langle \rangle \langle \rangle$ () {} []							
Trig		<	>	()	{ }	[]	
Var		<	>	()	{ } ≠	[]	
Var abc		< 4	> ≥	()	{ } ≠	[] ∠	
Var abc	Ŧ	< ×	> ≥	() =	{} ≠ ans	[] ∠ EXE	

t = 19.87 min; i.e. 9:20 a.m.

- 1 mark for equating the two equations correctly
- 1 mark for the correct answer

Question 4a.

Worked solution

The function f_a is strictly increasing for $f'(x) \ge 0$.

Use CAS to find f'(x) = 0.

So, the function is increasing for $x \in [4^{\frac{1}{3}}a^{\frac{2}{3}}, \infty)$.

- 1 mark for letting f'(x) = 0
- 1 mark for the correct answer

Question 4b.

Worked solution

The minimum occurs when f'(x) = 0.

So, when
$$x = 4^{\frac{1}{3}}a^{\frac{2}{3}}$$
, $f(x) = \frac{3(2a)^{\frac{1}{3}}}{2} - 3$.

• 1 mark for
$$x = 4^{\frac{1}{3}} a^{\frac{2}{3}}$$

• 1 mark for
$$f(x) = \frac{3(2a)^{\frac{1}{3}}}{2} - 3$$

Question 4c.

Worked solution

For
$$f_a(x) = \frac{a}{x} + \sqrt{x} - 3$$
 and $f'(x) = \frac{1}{2\sqrt{x}} - \frac{a}{x^2}$ at $x = 4$,
 $f(4) = \frac{a}{4} - 1$ and $f'(4) = \frac{1}{4} - \frac{a}{16}$.

So, the equation of the tangent is: y - y = m(x - x)

$$y - y_{1} = m(x - x_{1})$$

$$y - \left(\frac{a}{4} - 1\right) = \left(\frac{1}{4} - \frac{a}{16}\right)(x - 4)$$

$$y = \left(-\frac{a}{16} + \frac{1}{4}\right)x - 1 + \frac{a}{4} + \frac{a}{4} - 1$$

$$y = \left(-\frac{a}{16} + \frac{1}{4}\right)x + \frac{a}{2} - 2$$

$$y = -\left(\frac{a}{16} - \frac{1}{4}\right)x + \frac{a}{2} - 2$$

$$y = -\left(\frac{a - 4}{16}x + \frac{(a - 4)}{2}\right)$$

• 1 mark for
$$x = 4$$
, $f(4) = \frac{a}{4} - 1$

- 1 mark for $f'(4) = \frac{1}{4} \frac{a}{16}$
- 1 mark for the correct tangent line equation

Question 4d.

Worked solution

The y-intercept of $f_a(x)$ is $y = \frac{a-4}{2}$.

The y-intercept of $g_a(x) = f_a(x) + b$ is $b + \frac{a-4}{2}$.

Let the *y*-intercept equal zero, giving:

$$b + \frac{a-4}{2} = 0$$
$$b = \frac{4-a}{2}$$

- 1 mark for finding the *y*-intercept
- 1 mark for $b = \frac{4-a}{2}$

Question 4e.i.

Worked solution

Using CAS, the *x*-intercepts occur at x = 1 and x = 7.4641.

So, the area is equal to $\left| \int_{1}^{7.4641} \left(\frac{2}{x} + \sqrt{x} - 3 \right) dx \right|.$

Using CAS, this is 2.444.

Mark allocation: 2 marks

- 1 mark for writing area is equal to $\int_{1}^{7.4641} \left(\frac{2}{x} + \sqrt{x} 3\right) dx$
- 1 mark for the correct answer

• This question is worth 2 marks, so be careful to show a 'thinking step'. In this case, include the integral that allows the area to be calculated.

Question 4e.ii.

Worked solution

Given that $h_a(x) = f_a(2x)$, the graph of $y = h_a(x)$ is formed by a dilation of factor 0.5 in the *x*-direction. This means that the area formed is half the size; i.e. the area that is bounded by the *x*-axis and the graph of $y = h_a(x)$ for a = 2 is $0.5 \times 2.44389 = 1.2219 = 1.222$

Mark allocation: 2 marks

- 1 mark for 0.5×2.44389
- 1 mark for the correct answer

• This is a 'hence' question and therefore you must show that you have used the previous result.

Question 5a.i.

Worked solution

 $0.7^4 = 0.2401$

Mark allocation: 1 mark

• 1 mark for the correct answer

Question 5a.ii.

Worked solution

 $X \sim Bi(n = 10, p = 0.7)$

Pr(X = 4) = 0.0368

¢E	dit Action In	teractive	1	×
0.5 <u>1</u> 1⇒2		₽ <u>fdx</u>	• [++]	v >
binon	nialPDf(4,1	0,0.7))	
		0.03	675690	9
þ				
				T
Alg	Decimal	Real	Rad	(11)

Mark allocation: 1 mark

• 1 mark for the correct answer

Question 5a.iii

Worked solution

 $Pr(GGGGGMMMMMM | X = 4) = \frac{Pr(GGGGMMMMMM)}{Pr(X = 4)} = \frac{0.7^4 0.3^6}{0.036756909} = 0.0048$

Mark allocation: 2 marks

- 1 mark for Pr(GGGGMMMMMM | X = 4)
- 1 mark for the correct answer

Question 5b.

Worked solution

Using CAS:

🜣 Edit Action Interactive 🖂						
$ \begin{array}{c c} 0.5 \\ \hline 1 \rightarrow 2 \end{array} \begin{array}{c} 0 \\ \hline J dx \\ \hline J dx \\ \hline \end{array} \end{array} \\ Simp \begin{array}{c} \underline{f dx} \\ \hline \underline{f dx} \\ \hline \end{array} \end{array} \begin{array}{c} \nabla \\ \hline \end{array} \end{array} \begin{array}{c} \nabla \\ \hline \end{array} \end{array} $						
normCE)f(30,	∞,5.	5,22	.5)		
		0.	0863	41020	71	
þ						
					•	
Math1	Line	-	√■	π	¢	
Math2	0	e	ln	log _∎ □	∇	
Math3		X ²	X ⁻¹	log ₁₀ (∎)	solve(
Trig		toDMS	{	{}	()	
Var	cin		ton	0	P	
abc	sin	cos	tan			
A V	+	E	4	ans	EXE	
Alg	Decima	al	Real	Rad	(11)	

 $X \sim N(\mu = 22.5, \sigma = 5.5)$ Pr(X > 30) = 0.0863

Mark allocation: 1 mark

• 1 mark for the correct answer

Question 5c.i.

Worked solution

C Edit Action Interactive						
$ \stackrel{0.5}{\overset{1}{\mapsto}2} \stackrel{1}{} \stackrel{fdx}{} $ Simp $\stackrel{fdx}{} \checkmark \checkmark \stackrel{1}{\longleftarrow} \checkmark $						
normCI)f(30,	,∞,5.	5,22	.5)		
		0.	0863	41020	71	
invNori	nCDf ("R",C).08,	1,0)		
			1.4	05071	56	
invNorı	nCDf ("L",O	0.04,	1,0)		
		-	1.75	06860	71	
Math1	Line	-	$\sqrt{\blacksquare}$	π	⇒	
Math2	0	e	ln	log _∎ □	$\sqrt{\Box}$	
Math3		X ²	X ⁻¹	log ₁₀ (II)	solve(
Trig		toDMS	{	{}	()	
Var	sin	cos	tan	0	r	
abc						
- T	+	1	自	ans	EXE	
Alg	Decima	al	Real	Rad	(III)	

 $X_A \sim N(\mu, \sigma)$ $Pr(X_A > 35) = 0.08 \text{ and } Pr(X_A < 5) = 0.04$ $Pr(Z > \frac{35 - \mu}{\sigma}) = 0.08 \text{ and } Pr(Z < \frac{5 - \mu}{\sigma}) = 0.04$ Using the inverse normal distribution: $\frac{35 - \mu}{\sigma} = 1.4051 \text{ and } \frac{5 - \mu}{\sigma} = -1.7507$ $\mu + 1.4051\sigma = 35 \text{ and } \mu - 1.7507\sigma = 5$

- 1 mark for $Pr(X_A > 35) = 0.08$ and $Pr(X_A < 5) = 0.04$
- 1 mark for leading to the result $\frac{35-\mu}{\sigma} = 1.4051$ and $\frac{5-\mu}{\sigma} = -1.7507$

Question 5c.ii.

Worked solution

 $\mu = 21.643$ and $\sigma = 9.506$.

🗢 Edit Action Interactive 🛛 🖂									
$ \overset{0.5}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$									
INVINORINCEDI (L , U. U4, 1, U)									
-1.750686071									
binomialCDf (7, 20, 20, 0.08)									
6.375493933E-4									
x+1.4051y=35 x-1.7507y=5 x,y									
{x=21.64268965, y=9.50630 ►									
μ									
Math1	Line	-	V	π	•				
Math1 Math2	Line		√∎ ln	π log _m []	 				
Math1 Math2 Math3	Line	••• •••	√ ■ ln x ⁻¹	π log _m []	⇒ ¶√⊡ solve(
Math1 Math2 Math3 Trig	Line	e x ²	√■ In x ⁻¹	π log _m [] log ₁₀ (II)	⇒ √□ solve(
Math1 Math2 Math3 Trig Var	Line I I I I I I I I I I I I I	e v ² toDMS	√■ ln x ⁻¹ {■	π log _m [] log ₁₀ (II) { }	⇒ √□ solve(() r				
Math1 Math2 Math3 Trig Var abc	Line	e x ² toDMS cos	√■ In x ⁻¹ {■ tan	π log _m [] log ₁₀ (II) { }	> >√□ solve(() *				
Math1 Math2 Math3 Trig Var abc	Line	e x ² toDMS cos	√■ In x ⁻¹ {■ tan	π log_ logio(II) { } ° ans	⇒ Solve(() к EXE				

- 1 mark for finding the mean
- 1 mark for finding the standard deviation

Question 5d.

Worked solution

$X \sim Bi(n = 20, p = 0.08)$								
$\Pr(X \ge 7) = 0.00064$								
C Edit Action Interactive								
$ \overset{0}{\overset{5}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{1$								
0.08634102071								
invNormCDf("R", 0. 08, 1, 0)								
1.40507156								
invNormCDf("L", 0.04, 1, 0)								
-1.750686071								
binomialCDf (7, 20, 20, 0.08)								
omonna		7,20,	20,0	.08)				
billounia	aicDi (7,20, 6.3	20,0 37549	39331	s-4			
		7,20, 6.3	20,0 37549	39331	s-4			
Math1	Line	7,20, 6.3	20,0 37549 √■	.08) 39331 π	s-4 ▼			
Math1 Math2	Line	7, 20, 6. 3	20,0 37549 √∎ In	- 08) 39331 π log_Ω	s-4 ▼			
Math1 Math2 Math3		7, 20, 6. 3	20,0 37549 √■ ln x ⁻¹	- 08) 39331 π log _m []	s-4 ▼ ▼□ solve(
Math1 Math2 Math3 Trig		7, 20, 6.3 ••• ••• x ² toDMS	20,0 37549 √■ ln x ⁻¹ {	π log_m□ log_to(II) { }	s-4 ▼ ▼□ solve(
Math1 Math2 Math3 Trig Var	Line	7, 20, 6.3 e [•] x ² toDMS	20, 0 37549 √■ ln x ⁻¹ {	π log _m log ₁₀ (II) { }	z-4 ▼ ▼□ solve(() r			
Math1 Math2 Math3 Trig Var abc	Line	7, 20, 6.3 e e x ² toDMS cos	20, 0 37549 √■ ln x ⁻¹ {	π log_ log_ i <td>z-4 ▼ ▼□ solve(() r</td>	z-4 ▼ ▼□ solve(() r			
Math1 Math2 Math3 Trig Var abc	Line	7, 20, 6.3 e e x ² toDMS cos	20, 0 37549 √■ ln x ⁻¹ {■ tan	π log_ log_ ι <td>z-4 ▼ ▼□ solve(() r EXE</td>	z-4 ▼ ▼□ solve(() r EXE			

- 1 mark for identifying the binomial distribution $X \sim Bi(n = 20, p = 0.08)$
- 1 mark for the answer $Pr(X \ge 7) = 0.00064$

Question 5e.

Worked solution

 $Pr(\text{home goal} | \text{goal is more than } 28 \text{ m}) = \frac{Pr(\text{home goal and goal is more than } 28 \text{ m})}{Pr(\text{goal is more than } 28 \text{ m})}$

$$= \frac{0.6 \operatorname{Pr}(X_{\rm H} > 28)}{0.6 \operatorname{Pr}(X_{\rm H} > 28) + 0.4 \operatorname{Pr}(X_{\rm A} > 28)}$$
$$= \frac{0.6 \times 0.158655}{0.6 \times 0.158655 + 0.4 \times 0.251832}$$
$$= 0.4859$$

C Edit Action Interactive									
	► [fdx Jdx	Simp	ſdx,	• ₩	v >				
normCDf(28,∞, 5.5, 22.5)									
0.1586552539									
normCDf(28,∞,9.506,21.64►									
0.2518320976									
0.6*0.158655253									
0.6*0.1586552539+0.4*0.2									
0.485862808									
Math1	Line	-	√■	π	÷				
Math2	0	е"	ln	log _∎ □	VD				
Math3		X ²	X^{-1}	log ₁₀ (II)	solve(
Tria									
Ver		toDMS	{	{ }	()				
Var	∎00 sin	toDMS cos	{E tan	{ } °	() r				
Var abc	■00 sin	toDMS cos	{ 🖪 tan	<pre>{ }</pre>	() r EXE				

- 1 mark for understanding the conditional probability $Pr(\text{home goal}|\text{goal is more than } 28 \text{ m}) = \frac{Pr(\text{home goal and goal is more than } 28 \text{ m})}{Pr(\text{goal is more than } 28 \text{ m})}$
- 1 mark for the correct answer