|--|

Online & home tutors Registered business name: itute ABN: 96 297 924 083

Mathematical Methods (CAS)

2015

Trial Examination I (1 hour)

Instructions

Answer all questions. Do not use CAS/calculators.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale.

Question 1

Consider the parabolas $y = -x^2$ and $y = 2(x-a)^2 + b$ where $a, b \in R \setminus \{0\}$. The two parabolas *touch* each other

a. Find a value for each of a and b.

2 marks

b. Sketch the graph of b versus a.

a. The graph of $y = \frac{1}{x+1} + 1$ is reflected in the line y = x, followed by a translation of 2 units in the negative x - direction and then a translation of 2 units in the positive y - direction. Find the equation of the resulting graph. 2 marks

Given $h: D \to R$, $h(x) = \sqrt{\frac{1}{x+1} + 1}$ and $g: \left(a, \frac{5\pi}{6}\right) \to R$, $g(x) = 2\sin x$, where *D* is the maximal domain of function *h*, and $a \in R$.

b. Find D, the maximal domain of function h.

c. Find the minimum value of a such that $h \circ g$ is defined.

3

2 marks

Consider the function $f(x) = e^{-x} - \frac{x}{e}$, given $e \approx 2.7$.

a. Use the method of addition of ordinates to sketch the graph of y = f(x). Show the coordinates of the axis-intercepts.

3 marks

Consider the graphs of $y = \sqrt{x} - 1$ and $y = \sqrt{2x+2} - 2$. $\frac{x}{a} + \frac{y}{b} = 1$ is common tangent to the two graphs.		
a.	Find the coordinates of the intersection(s) of the two curves.	3 marks
b.	Find the value(s) of a and the corresponding value(s) of b .	2 marks
0	nostion 5	
Cc	points for $f(x) = 2\log_{10}(2x-1) - \log_{10}(x+1)$.	
a.	State the domain of the function.	1 mark
b.	Write down the equation(s) of the asymptote(s).	1 mark
c.	Find the coordinates of the x-intercept(s) of the graph of $y = f(x)$.	2 marks

Use $f(a+h) \approx f(a) + hf'(a)$ to estimate the value of $\sin 46^\circ$. Leave your answer in terms of π and surds. 3 marks

Question 7

a. Given $y = e^x(\sin x - \cos x)$, show that $\frac{dy}{dx} = 2e^x \sin x$.

b. Use the result in part a to find $\int_{0}^{3} e^{x} \sin x \, dx$.

2 marks

1 mark

a. Write down the equation of the inverse of $y = (x-1)^2 + 1$. Express y in terms of x. 1 mark

b. Find the area of the region bounded by the line x = 2 and the inverse of $y = (x-1)^2 + 1$. 2 marks

Question 9

There are only two routes for a student to travel to school, Route A or Route B. The two routes are equally likely to be chosen by the student to travel to school. The student goes to school five days a week.

The probability that the student travels to school by Route A on *n* days or more in a week is $\frac{13}{16}$, where

 $n \in \{1, 2, 3, 4, 5\}$. Find the probability that the student travels to school by Route B on *n* days or less in a week.

2 marks

 $f(x) = \begin{cases} 0, & x < 1 \\ |k(x-2)| + \frac{1}{5}, & 1 \le x \le 5 \\ 0, & x > 5 \end{cases}$ is a probability density function of random variable X, where $x \in X$.

a. Show that
$$|k| = \frac{1}{25}$$
. 2 marks

b. Find the median of X.

2 marks

End of exam 1