The Mathematical Association of Victoria MATHEMATICAL METHODS (CAS) SOLUTIONS: Trial Exam 2015

Written Examination 2

SECTION 1

1. A 2. B 3. D 4. C 5. D 6. B 7. B 8. E 9. D 10. A 11. C

12. E 13. C 14. A 15. E 16. B 17. C 18. E 19. D 20. D 21. B 22. A

MULTIPLE CHOICE - WORKED SOLUTIONS

Question 1

x is in the fourth quadrant

$$\tan(x) = -\frac{\sqrt{21}}{2} \qquad \qquad A$$

Question 2

$$f: R \to R, f(x) = -3\sin\left(\frac{x}{2} + 1\right) + 1$$

The amplitude is $|-3| = 3$
The period $= \frac{2\pi}{\left(\frac{1}{2}\right)} = 4\pi$ B

Question 3

 $g(x) = \tan(3x-1) + \frac{\pi}{2}$ The period = $\frac{\pi}{3}$ Let $3x-1 = \frac{\pi}{2}$ $x = \frac{\pi}{6} + \frac{1}{3}$ General solution $x = \frac{\pi}{6} + \frac{1}{3} + \frac{\pi}{3}k, \ k \in \mathbb{Z}$ $x = \frac{(2k+1)\pi + 2}{6}, \ k \in \mathbb{Z}$ D

 $A\cos^{2}(x) - B\cos(x) = 0, x \in [0, 2\pi]$ $\cos(x) (A\cos(x) - B) = 0$ Solve $\cos(x) = 0$ $x = \frac{\pi}{2} \text{ or } x = \frac{3\pi}{2} \qquad 2 \text{ solutions}$ Solve $A\cos(x) - B = 0$ $\cos(x) = \frac{B}{A}$ $-1 \le \frac{B}{A} \le 1$

To get no solutions |B| > |A| C

Question 5

$$g(x) = \frac{1}{2}\sqrt{x^{2} + 2x + 1}$$
$$= \frac{1}{2}\sqrt{(x+1)^{2}}$$
$$= \frac{1}{2}|x+1|$$

then
$$g(a+1) = \frac{1}{2}|a+1+1| = \frac{1}{2}|a+2|$$
,
where $a > 2$, $g(a+1) = \frac{1}{2}(a+2)$ D
Define $g(x) = \frac{1}{2} \cdot \sqrt{x^2 + 2x + 1}$
done
 $g(a+1)$
 $\frac{|a+2|}{2}$

2

A possible equation for the graph shown is $y = -\sqrt{9 - x^2} - 1$ **B**

It is a semicircle with radius 3 and centre (0, -1)

Question 7

$$g: R \setminus \{1\} \to R, g(x) = \frac{2}{x-1} \text{ and } f: [0,\infty) \to R, f(x) = (x+2)^2 + 1$$

The domain of $f \times g$ is $[0,1) \cup (1,\infty)$.
The range is $(-\infty, -10] \cup [12 + 4\sqrt{10}, \infty)$ B

This is the graph of a one to many relation (horizontal:vertical line test).

It is not a function as a vertical line hits the graph more than once for x > 0.

Question 9

The image of the function
$$g(x) = 2x^4$$
 is $y = -\frac{2}{3}\left(\frac{x}{3}+1\right)^4$.

The transformations that have been applied are:

reflection in the *x*-axis

gives $y_1 = -2x^4$

then a dilation from the y-axis by a factor of 3

gives $y_2 = -2\left(\frac{x}{3}\right)^4$

then a translation in the negative direction of the x axis by 3

gives $y_3 = -2\left(\frac{x}{3} + 1\right)^4$

followed by a dilation from the x-axis by a factor of $\frac{1}{3}$

gives
$$y_4 = -\frac{2}{3} \left(\frac{x}{3} + 1\right)^4$$
 D

$\ensuremath{\mathbb{C}}$ The Mathematical Association of Victoria, 2015

E

 $f:(-\infty,-2) \rightarrow R, f(x) = \frac{-3}{x+2}$ The inverse is $f^{-1}(x) = -\frac{3}{x} - 2$ define $f(x) = \frac{-3}{x+2}$ done solve (f(y)=x, y) $\left\{y = \frac{-3}{x} - 2\right\}$ Domain $f^{-1} = \operatorname{range} f = (0,\infty)$ $f^{-1}:(0,\infty) \rightarrow R, f^{-1}(x) = -\frac{3}{x} - 2$

Question 11

The graph with equation $y = (x+1)^2$ is transformed to its image equation $y = 5(x-3)^2 + 2$. Option A is incorrect as the translation is incorrect.

$$T\left(\begin{bmatrix} x\\ y \end{bmatrix}\right) = \begin{bmatrix} 1 & 0\\ 0 & 5 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} + \begin{bmatrix} 0\\ 2 \end{bmatrix}$$

Option B is incorrect as the dilation of a factor of 5 from the *y*-axis should be a factor of 5 from the *x*-axis.

$$T\left(\begin{bmatrix} x\\ y \end{bmatrix}\right) = \begin{bmatrix} 5 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} + \begin{bmatrix} 4\\ 2 \end{bmatrix}$$

Test Option C

$$T\left(\begin{bmatrix} x\\ y \end{bmatrix}\right) = \begin{bmatrix} -1 & 0\\ 0 & 5 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} + \begin{bmatrix} 2\\ 2 \end{bmatrix}$$

-x + 2 = x₁ \Rightarrow x = 2 - x₁
Gives
 $5y + 2 = y_1 \Rightarrow y = \frac{y_1 - 2}{5}$
In equation $y = (x + 1)^2$
We get $\frac{y_1 - 2}{5} = (2 - x_1 + 1)^2$
 $y_1 = 5(3 - x_1)^2 + 2$
Giving $y = 5(x - 3)^2 + 2$

 $[\]ensuremath{\mathbb{C}}$ The Mathematical Association of Victoria, 2015

Question 13

 $h(x) = x^{2} + 2x + 1$ $\therefore h'(x) = 2x + 2$ For $\{x : h'(x) = 1\}$ Solve 2x + 2 = 1Gives $x = -\frac{1}{2}$ C

Question 14

 $f'\left(\frac{1}{2}\right) = \frac{1}{\sqrt{2}}$

$$f(x) = \begin{cases} x+1, x \in [2, \infty) \\ \sqrt{2x+1}, x \in (0, 2) \\ x^{\frac{2}{3}}, x \in (-\infty, 0] \end{cases}$$
$$x = \frac{1}{2}.$$
 Hence differentiate the middle rule of the function.
$$\frac{d}{dx} \left(\sqrt{2x+1}\right) = \frac{1}{\sqrt{2x+1}}$$

© The Mathematical Association of Victoria, 2015

Α

Area = f(0) + f(1) + f(2)By symmetry this is the same as f(4) + f(5) + f(6)as the asymptote is at x = 3

Question 16

The average value = $\frac{1}{\pi} \int_{-\pi}^{0} (-e^{2\cos(x+\pi)}) dx = -2.3$ correct to one decimal place **B**

Е

Question 17

$$\int_{-1}^{3} h(x)dx = 5$$

$$\int_{3}^{-1} (1+5h(x))dx$$

$$= -\int_{-1}^{3} (1+5h(x))dx$$

$$= -\int_{-1}^{3} (1)dx - \int_{-1}^{3} (5h(x))dx$$

$$= -\int_{-1}^{3} (1)dx - 5\int_{-1}^{3} h(x)dx$$

$$= -[x]_{-1}^{3} - 5 \times 5$$

$$= -(3+1) - 25$$

$$= -4 - 25 = -29$$

Question 19

0.1 + a + b + c = 1 a + b + c = 0.9 B True Using E(X)0.1 + 3a + 5b + 7c = 4 3a + 5b + 7c = 3.9 C True Using Var(X) 0.1 + $9a + 25b + 49c - 4^2 = 2$ Hence 9a + 25b + 49c = 1.9 D false **D** Solving the three equations shows A is correct 0.1 + 0.325 = 0.425 The median is 5. E is correct.

Using z scores, $z = \frac{x - \mu}{\sigma}$

Physics is the highest. **D**

1.1 1.2 1.3	*Exam 2 2015 🗢	4	×
<u>60-55</u> 7		0.714286	^
75-70 10		0.5	
<u>65-60</u> 8		0.625	
55-50		0.833333	

1.1 1.2 1.3	*Exam 2 2015 🗢	(1) ×
<u>65-60</u> 8		0.625
<u>55-50</u> 6		0.833333
70-80 7		-1.42857
1		

Question 21

Pr(X < 135 | X > 130) $= \frac{Pr(130 < x < 135)}{Pr(x > 130)}$ $= \frac{Pr(130 < x < 135)}{\frac{1}{2}}$ = 2Pr(130 < X < 135) = 2Pr(125 < X < 130)

Question 22

A score of 15 can be obtained by a 5 then 10 or a 10 then 5.

Area of the inner triangle = $4\sqrt{3}$

Area of the middle section = $25\sqrt{3} - 4\sqrt{3} = 21\sqrt{3}$

Area of the board = $100\sqrt{3}$

Probability of a score of
$$15 = 2 \times \frac{4\sqrt{3}}{100\sqrt{3}} \times \frac{21\sqrt{3}}{100\sqrt{3}} = 2 \times \frac{4}{100} \times \frac{21}{100}$$
 A

B

SECTION 2 EXTENDED RESPONSE QUESTIONS

Question 1 (13 marks)

- **b.** $f(4) = \sqrt{2}$ **c.** Solve $\sqrt{x-2} = \frac{1}{2}$ $x = \frac{9}{4}$ 1A
- **d.** Equation of the tangent at x = 4 is $y = \frac{\sqrt{2}}{4}x$

1A

 $\ensuremath{\mathbb{C}}$ The Mathematical Association of Victoria, 2015

(Note that this tangent goes through the origin)

e. Area =
$$\int_{0}^{2} \left(\frac{\sqrt{2}}{4}x\right) dx + \int_{2}^{4} \left(\frac{\sqrt{2}}{4}x - \sqrt{x-2}\right) dx$$
 1A

$$\int_{0}^{4} \left(\frac{\sqrt{2}}{4}x - \sqrt{x-2}\right) dx \qquad 1A$$

$$\int_{2}^{4} \left(\frac{\sqrt{2}}{4}x - \sqrt{x-2}\right) dx \qquad 1A$$

OR

Area=
$$\int_{0}^{4} \left(\frac{\sqrt{2}}{4}x\right) dx - \int_{2}^{4} \left(\sqrt{x-2}\right) dx$$
 1A

$$\int_{0}^{4} \left(\frac{\sqrt{2}}{4}x\right) dx \qquad 1A$$

$$\int_{2}^{1} \left(\sqrt{x-2}\right) dx \qquad 1A$$

f. Area =
$$\frac{2\sqrt{2}}{3}$$
 1A
$$\int_{-\infty}^{\infty} \frac{\sqrt{2} \cdot x}{\sqrt{2} \cdot x} dx + \int_{-\infty}^{\infty} \frac{4\sqrt{2} \cdot x}{\sqrt{2} \cdot x} - \sqrt{x-2} dx$$

 $\int_{0}^{1} 4 \operatorname{dx} \int_{2}^{1} 4 \operatorname{dx} 2\operatorname{dx} \frac{2 \cdot \sqrt{2}}{3}$

g. Equation of normal is $y = -2\sqrt{2}x + 9\sqrt{2}$. **1A** The normal intersects the *x*-axis at x = 4.5.

Area =
$$\int_{2}^{4} \left(\sqrt{x-2}\right) dx + \int_{4}^{4.5} \left(-2\sqrt{2}x + 9\sqrt{2}\right) dx$$
 1A
Area =
$$\frac{19\sqrt{2}}{12}$$
 square units 1A

$$\int_{2}^{4} \sqrt{x-2} \, dx + \int_{4}^{4.5} -2 \cdot \sqrt{2} \cdot x + 9 \cdot \sqrt{2} \, dx$$

 $-2\cdot\sqrt{2}\cdot x+9\cdot\sqrt{2}$

Question 2 (15 marks)

- **a.** $5-2x > 0, x < \frac{5}{2}$ $a = \frac{5}{2}$ 1A
- **b.** Solve $g(x) = -\log_e(5-2x)+1=0$

$$x = \frac{5-e}{2} \qquad 1A$$

c. $g(0) = 1 - \log_e(5)$ 1A

These are now the axial intercepts.

f. differentiable for domain
$$x \in \left(-\frac{5}{2}, 0\right) \cup \left(0, \frac{5}{2}\right)$$
 1A

g. For
$$x \in \left(0, \frac{5}{2}\right)$$
, $g(|x|) = 1 - \log_e(5 - 2x)$
 $g'(|x|) = \frac{2}{5 - 2x}$ 1A
For $x \in \left(-\frac{5}{2}, 0\right)$, $g(|x|) = 1 - \log_e(5 + 2x)$
 $g'(|x|) = \frac{-2}{5 + 2x}$ 1A

1A

Correct domain

$$\therefore g'(|x|) = \begin{cases} \frac{-2}{5+2x}, x \in \left(-\frac{5}{2}, 0\right) \\ \frac{2}{5-2x}, x \in \left(0, \frac{5}{2}\right) \end{cases}$$

- h. 3 correct transformations in a correct order 1A The remaining correct and in a correct order 1A There are other possibilities.
 - Translation of 1 unit in the negative direction of the *y*-axis
 - Translation of 2.5 units in the negative direction of the *x*-axis
 - Dilation by a factor of 2 units from the *y*-axis
 - Reflection over the *y*-axis
 - Reflection over the *x*-axis

a. This is at the point of inflection.

$$x = \frac{\pi}{3}$$
1A
b. $x = \frac{5\pi}{4}$
 $S\left(\frac{5\pi}{4}\right) = -160$ cm to the nearest cm
1A
 S_1 is 160 cm below the water
1A
1.5 1.6 1.7 *Exam 2 2015 \bigcirc (1)
Define $s(x) = \tan\left(\frac{-1}{2} \cdot \left(x - \frac{\pi}{3}\right)\right) + 6|0 \le x \le \frac{5 \cdot \pi}{4}$
Done
 $s\left(\frac{5 \cdot \pi}{4}\right)$
-1.59575

c.
$$h: \left[0, \frac{\pi}{4}\right] \rightarrow R, h(x) = \tan\left(-\frac{1}{2}\left(x - \frac{\pi}{3}\right)\right) + 6 - 3\cos\left(\frac{x}{2}\right)$$

1A Rule

d. The minimum value occurs when x = 0.701... **1M** h(x) = 336 cm **1A**

e.
$$x = \frac{\pi}{4}$$
 when B_1 ends
 $B\left(\frac{\pi}{4}\right) = 2.7716...$
Solve $S(x) = 2.7716...$ for x
 $x = 3.588...$ 1A

Horizontal distance is $3.588... - \frac{\pi}{4} = 280$ cm to the nearest cm 1A

f. Period =
$$\frac{2\pi}{\left(\frac{2\pi}{3}\right)} = 6$$
 1A
 $\frac{300}{6} = 50$ waves 1A

[©] The Mathematical Association of Victoria, 2015

Solve
$$w(t) = 3$$
 for t
 $t = \frac{1}{2}, \frac{5}{2}$
 B_1 will be under water for 2 seconds per cycle (6 seconds)
 $\frac{1}{3}$ of the time 1A
1.6 1.7 1.8 *Exam 2 2015 \bigtriangledown (1)
 $solve\left(2 \cdot sin\left(\frac{\pi}{3} \cdot t\right) + 2 = 3, t\right) | 0 \le t \le 6$ $t = \frac{1}{2}$ or $t = \frac{5}{2}$

1

Question 4 (17 marks) Let P =pass and F =fail

Ī

1

Let
$$P = pass and F = fall$$

a. $Pr(PPP) = 0.3 \times 0.6 \times 0.6$
 $= 0.108 \text{ or } \frac{27}{250}$ 1A
b. $Pr(PFF) + Pr(FPF) + Pr(FFP)$ 1M
 $= 0.3 \times 0.4 \times 0.7 + 0.7 \times 0.3 \times 0.4 + 0.7 \times 0.7 \times 0.3$
 $= 0.315$ 1A
c. $Pr(P = 3 | P \ge 1) = \frac{Pr(P = 3 \cap P \ge 1)}{Pr(P \ge 1)}$ 1M
 $= \frac{Pr(P = 3)}{1 - Pr(F = 3)}$
 $= \frac{0.3 \times 0.6 \times 0.6}{1 - 0.7^3}$
 $= \frac{12}{73}$ 1A

1.8 1.9	1.10 🕨	*Exam 2 2015 🗢	<[] 🛛 🔁
0.3· (0.6) ²			0.108
0.3·0.4·0	.7+0.7	0.3·0. 4+(0.7) ² ·	0.3
			0.315
$\frac{0.108}{1-(0.7)^3}$			0.164384
$exact \left(\frac{0.1}{1-0.1} \right)$	$\frac{108}{(7)^3}$		<u>12</u> 73 ⊻

$$\mathbf{d.} \begin{bmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{bmatrix}^5 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \mathbf{1M}$$
$$= \begin{bmatrix} 0.572 \\ 0.428 \end{bmatrix}$$

The probability he will pass the 6^{th} test is 0.428 correct to 3 decimal places **1A**

e. Steady states
$$\frac{0.3}{0.3+0.4} = \frac{3}{7}$$
 fail, $\frac{0.4}{0.3+0.4} = \frac{4}{7}$ pass
Jeremy is more likely to fail a test in the long term, **1A**
as the probability of Jeremy passing in the long term is $\frac{3}{7}$ and failing is $\frac{4}{7}$. **1A**
f. $X: N(u, \sigma^2)$

$$\begin{array}{ll}
X : N(\mu, \sigma^{2}) \\
Pr(X > 86) = 0.1, Pr(X > 95) = 0.01 \\
\frac{86 - \mu}{\sigma} = 1.281... (1) \\
\frac{95 - \mu}{\sigma} = 2.326... (2) \\
\mu = 74.96 \\
\sigma = 8.61 \\
\end{array}$$

I.1 1.2 1.3 ▶ *Exam 2 2015 ↓
 Inv Norm(0.9,0,1)
 I.28155
 inv Norm(0.99,0,1)
 2.32635
 solve(
$$\frac{86-\mu}{\sigma}$$
=1.2815515665787 and $\frac{95-\mu}{\sigma}$ =>
 μ =74.9606 and σ =8.61412
 I

g. $\Pr(X < a) = 0.85$ a = 83.89 1A

 $\ensuremath{\mathbb C}$ The Mathematical Association of Victoria, 2015

I.1 1.2 1.3 ▶ *Exam 2 2015 →
 Inv Norm(0.9,0,1)
 1.28155
 inv Norm(0.99,0,1)
 2.32635
 solve(
$$\frac{86-\mu}{\sigma}$$
=1.2815515665787 and $\frac{95-\mu}{\sigma}$ =>
 μ =74.9606 and σ =8.61412
 inv Norm(0.85,74.9606,8.61412)
 83.8886
 |
 \checkmark

h. $p^3 + p^2 + p = 1$ p = 0.543... $Pr(S \cap R) = Pr(S) \times Pr(R)$ Let $a = Pr(S \cap R)$ Solve $a = (a + p) \times p^3$ for a a = 0.101A

