MATHEMATICAL METHODS

Units 3 & 4 – Written examination 2

(188N1's 2013 trial exam upaatea for the current study desig	(n)
<u>SOLUTIONS</u>	
SECTION 1: Multiple-choice questions (1 mark each)	
Question 1	
Answer: A	
Explanation:	
Solve the two equations on CAS.	
Question 2	
Answer: C	
Explanation:	
It is negative cubic so either C or D. Check the x-intercept.	
Question 3	
Answer: E	

Explanation:

Define the functions on CAS and find f(g(x))

© TSSM 2015 Page 1 of 9

Question 4

Answer: D

Explanation:

$$f(x) = 2\left(\sqrt{x} + \frac{1}{2}\right)$$
$$g(x) = 2 \times \frac{1}{2}\left(\sqrt{x} + \frac{1}{2}\right)$$

Question 5

Answer: C

Explanation:

Domain: $4 - x \ge 0$ gives $x \le 4$ and the graph is above the x-axis.

Question 6

Answer: A

Explanation:

$$Av \ ROC = \frac{f(8) - f(2)}{8 - 2}$$

Question 7

Answer: C

Explanation:

Note the shaded end-points.

Question 8

Answer: C

Explanation:

$$f(g(x)) = \frac{3}{x+5}, \ x \neq -2$$

Answer: E

Explanation:

Eliminate incorrect options

Question 10

Answer: D

Explanation:

$$Amp = 2, \ Period = \frac{2\pi}{\frac{1}{5}}.$$

Question 11

Answer: E

Explanation:

$$\frac{dy}{dx}$$
 at $x = 4$ on CAS.

Question 12

Answer: B

Explanation:

$$A_1 = A_2$$

Question 13

Answer: B

Explanation:

normalline(f(x), x = 0) on CAS.

Question 14

Answer: C

Explanation:

$$(f(x))^2 \times (f(y))^2 = e^{2x} \times e^{2y} = e^{2x+2y} = f(2x+2y)$$

Question 15

Answer: A

Explanation:

$$\frac{1}{k} \int_0^k x^3 dx = 9$$
 gives $k = 6^{\frac{2}{3}}$ on CAS.

Question 16

Answer: B

Explanation:

 $binompdf\left(10,\frac{1}{5},6\right)$

Question 17

Answer: C

Explanation:

normcdf(165,170,165,7.62).

Question 18

Answer: A

Explanation:

binomcdf(6,0.2,5,6) on CAS.

Question 19

Answer: D

Explanation:

50th percentile means she is on average, due to the symmetry of the normal distribution

Question 20

Answer: C

Explanation:

Sketch on CAS and read the maximum value.

Question 21

Answer: C

Explanation:

$$k = 0.2$$
, $E(X) = 3.9$

Question 22

Answer: B

Explanation:

$$\frac{\pi}{n} = 3$$
 gives $n = \frac{\pi}{3}$

SECTION 2: Analysis Questions

Question 1

a. $r = l \sin \alpha$, $h = l \cos \alpha$

A2

2 marks

b.
$$V = \frac{1}{3}\pi r^2 h = \frac{\pi}{3}(l\sin\alpha)^2(l\cos\alpha) = \frac{\pi}{3}l^3\sin^2\alpha\cos\alpha$$

M1

1 mark

c.
$$V'(\alpha) = \frac{\pi}{3}l^3 \left(\sin^2 \alpha \times -\sin \alpha + \cos \alpha \times 2\sin \alpha \cos \alpha\right) = 0$$

 $\sin \alpha \left(-\sin^2 \alpha + 2\cos^2 \alpha\right) = 0$
 $\sin \alpha = 0$, $\tan^2 \alpha = 2$

$$\alpha = 0$$
, $\alpha = \pm \tan^{-1} \sqrt{2}$

$$\alpha = \tan^{-1} \sqrt{2}$$
, $V(\alpha) = \frac{2\sqrt{3}}{27}\pi l^3$

$$\left(an^{-1}\sqrt{2}\,,\,rac{2\sqrt{3}}{27}\pi l^3\,\,
ight)$$

Alternate form: $\left(\cos^{-1}\frac{\sqrt{3}}{3}, \frac{2\sqrt{3}}{27}\pi l^{3}\right)$ also correct

M3+A1

4 marks

d.
$$\alpha = \tan^{-1} \sqrt{2}$$
 is a point of maximum volume.

$$Max \ volume = \frac{2\sqrt{3}}{27}\pi \times 6^3 = 16\sqrt{3}\pi \ cm^3.$$

M1+A1

2 marks

Question 2

a. Period =
$$\frac{2\pi}{\frac{\pi}{2.2}}$$
 = 4.4 years and Amplitude = 300

A2

2 marks

b. Min = 200, Max =
$$800$$

A2

2 marks

c. Solve P(t) = 800 over [0, 5] t = 0.7. After 8.4 months

M1+A1 2 marks

d. Sketch the graph on CAS and read the domain when P < 300 2.3 < t < 3.5 and 6.7 < t < 7.9

M1+A2 3 marks

e. Strictly increasing for $t \in [0, 0.7] \cup [2.9, 5]$ Note that we include endpoints for strictly increasing intervals.

A3 3 marks

Question 3

a. Sketch on CAS and read the max: $0.45 \mu g/mL$

A1

1 mark

b. 3.5 minutes

A1

1 mark

c. $C(10) = 0.32 \,\mu\text{g/mL}$

M1+A1

2 marks

d.
$$\frac{C(5)-C(\frac{3}{2})}{5-\frac{3}{2}} = 0.0115 \frac{\mu g}{mL} / minute$$

M1+A1

2 marks

e. Solve
$$\frac{dc}{dt}$$
 < 0 on CAS
t > 3.53 minutes

M1+A1

2 marks

f.
$$\frac{dC_1}{dt} = 0$$
 at $t = 120 \dots (1)$
 $C_1(120) = 120 \dots (2)$

Solve the above equations on CAS to get a = e and $b = \frac{1}{120}$

M2+A1 3 marks

Question 4

a.
$$f(x) = x^2 + bx + \frac{b^2}{4} + 3 - \frac{b^2}{4} = \left(x + \frac{b}{2}\right)^2 + 3 - \frac{b^2}{4}$$

 $\frac{b}{2} = 5$ gives $b = 10$ $(b > 0)$

M1+A1 2 marks

b. Translation of + 5 units parallel to the x - axis Translation of + 22 units parallel to the y - axis

A2 2 marks

c. Range of $g:[0,\infty)$

Domain of f: R

Range of g is a subset of domain of f, hence f(g(x)) exists.

$$f(g(x)) = (x^2 + 5)^2 - 22$$

Or $f(g(x)) = x^4 + 10x^2 + 3$

M1+A2

3 marks

d. tangentline(h(x), x, k) $v = (4k^3 + 20k)x + (-3k^4 - 10k^2 + 3)$

> M1+A1 2 marks

e. $Area = \int_0^3 ((x^2 + 5)^2 - 22) dx$

A2

2 marks

Question 5

a.

i. Let
$$X \sim N(7.5, 2.5^2)$$

 $Pr(X < 11) = 0.9192$ (using CAS: $normcdf(-\infty, 11, 7.5, 2.5)$)

ii.
$$Pr(5.5 < X < 10.5) = 0.6731$$
 (using CAS: $normcdf(5.5, 10.5, 7.5, 2.5)$)

M1+A1 2 marks

b.
$$Pr(D < d) = 0.1$$
 $d = 4.3 \text{ km}$

M1+A1

2 marks

c.
$$n = 6$$
, $p = Pr(X \ge 6.8) = 0.6103$, $r = 4$
Let $Y \sim Bi(6, 0.6103)$
 $Pr(Y = 4) = 0.3160$ (using $binompdf(6, 0.6103, 4)$)

M2+A1 3 marks

d.
$$\Pr(x > 5) = 0.65 \rightarrow \Pr(X < 5) = 0.35$$

 $\frac{5 - 6.4}{\sigma} = -0.3853$
 $\sigma = 3.63$

M2+A1 3 marks

e.
$$\hat{p} = 0.8 \text{ and } n = 200$$

$$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.028284$$

$$(0.8 - 1.96 \times 0.028284, 0.8 + 1.96 \times 0.028284)$$

(0.745, 0.855)

M2+A1 3 marks

f.
$$M = 0.02, \hat{p} = 0.8$$

 $0.02 = 1.96\sqrt{\frac{0.8 \times 0.2}{n}}$
 $n = 1536.64$
Thus we need a sample size of 1527 pa

Thus we need a sample size of 1537 people.

M1+A1 2 marks