MATHEMATICAL METHODS (CAS)

Unit 2 Targeted Evaluation Task for School-assessed Coursework 1

2015 Multiple choice and extended response test on circular functions for Outcome 1

Recommended writing time*: 50 minutes Total number of marks available: 40 marks

TASK BOOK

* The recommended writing time is a guide to the time students should take to complete this task. Teachers may wish to alter this time and can do so at their own discretion.

Conditions and restrictions

- Students are permitted to bring into the room for this task: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the room for this task: blank sheets of paper and/or white out liquid/tape.
- A CAS calculator is permitted in this task.

Materials supplied

• Question and answer book of 15 pages.

Instructions

- Print your name in the space provided on the top of the front page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the room for this task.

SECTION A – Multiple-choice questions

Instructions for Section A

- Circle the correct response to each question.
- Each question is worth 1 mark.

Question 1

The radian measure of the angle 225° is:

A.
$$\frac{4\pi}{5}$$

B. $\frac{5\pi}{4}$
C. $\frac{55}{14}$
D. $\frac{45\pi}{52}$
E. $\frac{3\pi}{4}$

Question 2

The maximum value of $f(x) = -2\sin\left(\frac{\pi}{2}x\right) + 3$ is:

- **A.** −1
- **B.** 5
- **C.** 1
- **D.** -6
- **E.** 0

The period of the graph
$$y = \tan\left(\frac{x-1}{4}\right)$$
 is:

- A. 4π
- **B.** 2π
- **C.** *π*
- **D.** $\frac{\pi}{2}$ **E.** $\frac{\pi}{4}$

Question 4

If $\sin(2\theta) = -\frac{1}{3}$, $\frac{3\pi}{2} < \theta < 2\pi$, then $\tan(2\theta) - \cos(2\theta)$ is equal to: A. $\frac{11\sqrt{2}}{12}$ B. $\frac{5\sqrt{2}}{12}$ C. $\frac{-5\sqrt{2}}{12}$ D. $-\frac{11\sqrt{2}}{12}$ E. $\frac{\sqrt{2}}{4}$

The solutions of $\cos(2\theta - \pi) = \frac{1}{2}$, $-\pi < \theta < \pi$ is/are:

- A. $-\frac{2\pi}{3}, -\frac{\pi}{3}, \frac{\pi}{3}, \frac{2\pi}{3}$ B. $-\frac{2\pi}{3}, -\frac{\pi}{3}$ C. $\frac{\pi}{3}, \frac{2\pi}{3}$ D. $\frac{\pi}{3}$ E. $-\frac{\pi}{3}, \frac{\pi}{3}$

Question 6

The period of
$$f(x) = -3\cos\left(\frac{2x-1}{\pi}\right) + 1$$
 is:

- A. 2π
- **B.** *π*
- **C.** 1
- **D.** π^2
- **E.** $4\pi^2$

The domain and range of $f:(0, 2\pi) \rightarrow R$, $f(x) = \frac{2}{3}\tan(2x) + 1$ respectively are:

A. $(0, 2\pi)$ and R

B.
$$(0, 2\pi)$$
 and $\left(1, \frac{2\sqrt{3}}{3} + 1\right)$

- C. R and $\left(1, \frac{2\sqrt{3}}{3}+1\right)$
- **D.** $(0, 2\pi)$ and (1, 1)
- **E.** R and R

Question 8

The domain of one cycle of the function $f(x) = \frac{1}{3} \tan\left(\frac{x-3}{2}\right) + \pi$ could be:

- A. $(\pi, 3\pi)$
- **B.** $(0, 2\pi)$
- C. $(\pi + 3, 3\pi + 3)$
- **D.** $(0, \pi)$
- **E.** $(\pi 3, \pi + 3)$

The amplitude and range of the function $f(x) = -\frac{2}{3}\sin\left(\frac{x}{3} - 2\right) + 1$ is:

A. $\frac{2}{3}$ and [1, 5]B. $-\frac{2}{3}$ and (1, 5)C. $\frac{2}{3}$ and [-1, 1]D. $\frac{2}{3}$ and $\left[-\frac{1}{3}, 1\right]$ E. $\frac{2}{3}$ and $\left[\frac{1}{3}, \frac{5}{3}\right]$

Question 10

The x-intercepts of the graph of the function $y = -2\cos\left(\frac{x}{3}\right)$ over the domain $-2\pi < x < \pi$ are:

A.
$$\left(-\frac{3\pi}{2},0\right)$$

B. $\left(0,\frac{3\pi}{2}\right)$
C. $\left(\frac{3\pi}{2},0\right)$
D. $\left(-\frac{\pi}{2},0\right)$
E. $\left(-\frac{5\pi}{2},0\right)$

Which of the following is the equation of an asymptote of the function $y = tan\left(\frac{3x}{5}\right) + 4$?

A. x = 0B. $x = \frac{\pi}{3}$ C. $x = \frac{-\pi}{6}$ D. $x = \frac{-5\pi}{6}$ E. $x = \frac{\pi}{2}$

Question 12

If (2, 1) lies on the graph of $y = 2\sin\left(\frac{\pi ax}{2}\right)$, the value of *a* could be: A. $\frac{\pi}{6}$ B. $\frac{-7}{6}$ C. $\frac{1}{3}$ D. $\frac{7}{6}$ E. $\frac{-5}{6}$

Question 13

The value of $sin(420^\circ) - cos(360^\circ)$ is:

A.
$$\frac{\sqrt{3}-1}{2}$$

B. $\sqrt{3}-1$
C. $\frac{\sqrt{3}-2}{2}$
D. -0.13
E. $\frac{1-\sqrt{3}}{2}$

The rule for the following graph could be:

 $C. \quad y = \sin(2x) - 1$

D.
$$v = 2\sin(2x) - 1$$

 $\mathbf{E.} \quad y = -2\sin(2x) - 1$

Question 15

If *y*-intercept of the function $f(x) = \sin(2x) + \cos(2x) - 1$ is:

- **A.** −1
- **B.** 0
- **C.** 1
- **D.** 2
- **E.** 3

The number of solutions of the equation $3\sin\left(\frac{x}{2}\right) = -1$, $-\pi \le x \le \pi$, is/are:

- **A.** 1
- **B.** 2
- **C.** 3
- **D.** 4
- **E.** 5

Question 17

If $\cos(90^\circ + \theta) = 0.2851$, then the value of $\sin(\theta)$ is:

- **A.** 0.2851
- **B.** 0.7149
- **C.** 0.7149
- **D.** 0.2851
- **E.** 0

Question 18

If the graph of the function $f(x) = -\sin(x)$ is reflected in the *y*-axis and translated +2 units parallel to the *y*-axis, the transformed function g(x) has the rule:

$$A. \quad g(x) = -\sin(x) + 2$$

- **B.** $g(x) = \sin(x) 2$
- C. $g(x) = \sin(x) + 2$
- **D.** $g(x) = -\sin(x) 2$
- E. $g(x) = \sin(x-2)$

Question 19

If $f(x) = -\cos x$ and $g(x) = 2\sin x$, then the value of (fog)(0) is:

- **A.** -1
- **B.** 0
- **C.** -2sin(1)
- **D.** 1
- **E.** 2

The graph of the function $f(x) = \frac{1}{2}\sin(x)$ is transformed to the function $g(x) = -\frac{1}{2}\sin(2x - \pi) + 1$. The transformations required to transform the graph of y = f(x) to y = g(x) are:

- A. Dilation of a factor of $\frac{1}{2}$ unit from the x-axis, reflection in the x-axis, translation of $+\frac{\pi}{2}$ units parallel to the x-axis and translation of +1 unit parallel to the y-axis.
- **B.** Dilation of a factor of 2 units from the x-axis, reflection in the x-axis, translation of $+\frac{\pi}{2}$ units parallel to the x-axis and translation of +1 unit parallel to the y-axis
- C. Dilation of a factor of $\frac{1}{2}$ unit from the *y*-axis, reflection in the *x*-axis, translation of $+\pi$ units parallel to the *x*-axis and translation of +1 unit parallel to the *y*-axis
- **D.** Reflection in the y-axis, translation of $+\frac{\pi}{2}$ units parallel to the x-axis and translation of +1 unit parallel to the y-axis
- E. Dilation of a factor of $\frac{1}{2}$ unit from the y-axis, reflection in the x-axis, translation of $+\frac{\pi}{2}$ units parallel to the x-axis and translation of +1 unit parallel to the y-axis

SECTION B- Extended response questions

Instructions for Section B

- Answer each question in the space provided.
- Please provide appropriate workings and use exact answers when required.
- Unless otherwise stated, all decimals should be given correct to 2 decimal places.
- You are required to label axes appropriately.

Question 1

The height x metres, above the ground, of a person sitting on a Ferris wheel at time t seconds after the ride begins is modelled by the rule

$$x(t) = -6\cos\left(\frac{\pi}{24}t\right) + 8$$
, where $t \ge 0$

a. How high is the person above ground before the ride begins?

1 mark

b. How long does the Ferris wheel take for one complete revolution?

2 marks

c. What is the height of the man above ground 4 seconds after the ride? Give your answer correct to three decimal places.

2 marks

d. After how many seconds will the person be at a height of 9 m above the ground if the Ferris wheel completed 4 revolutions in one ride? Write to your answer correct to two decimal places.

3 marks

e. Find the average rate of change in height above the ground correct to two decimal places, in the first 5 seconds.

2 marks

f. What is the maximum height of the person above the ground?

1 mark

g. Sketch the graph of x(t) for one ride, clearly indicating any axes intercepts and coordinates of turning points, with coordinates to the nearest whole number.

Total 15 marks

Question 2

The velocity of a child sliding down a slide can be modelled by the following rule

$$v(t) = a \tan\left(\frac{\pi t}{n}\right) \quad for \quad 0 \le t \le 5$$

where v is the velocity in m/sec, t seconds after he starts to slide.

a. If the child takes 12 seconds to come down the slide, find the value of *n*.

2 marks

2015 MATHEMATICAL METHODS (CAS) SCHOOL-ASSESSED COURSEWORK

b. If the velocity of the child is 5m/sec after 3 seconds of the slide, find the value of *a*.

1 mark

c. Hence, sketch the graph of v(t) for the first five seconds of the slide, labelling all axes intercepts and end-points to the nearest whole number.

Total 5 marks

END OF TASK BOOK