MATHEMATICAL METHODS

Units 3 & 4 – Written examination 2

(TSSM's 2011 trial exam updated for the current study design) <u>SOLUTIONS</u>

SECTION 1: Multiple-choice questions (1 mark each)

Question 1

Answer: E

Explanation: If k = 2: (2 - 1)x + 4y = 8 and 3x - (-2 + 2)y = 2 + 1 x + 4y = 8 and 3x = 3x = 1 and $y = \frac{7}{4}$

Therefore it will have a unique solution.

Question 2

Answer: C

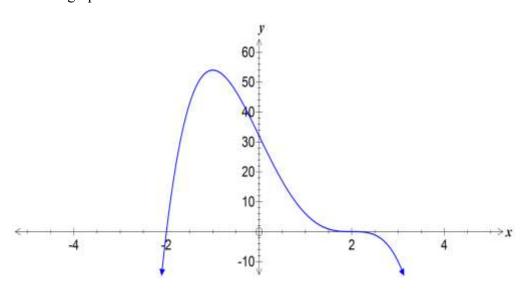
Explanation:

 $f(x - y) = (x - y)^3$ $f(x) - f(y) = x^3 - y^3$ $f(x - y) \neq f(x) - f(y)$

Question 3

Answer: B

Explanation: Sketch graph:



Question 4

Answer: C

Explanation: $\int_{1}^{4} (2f(x) + 6) dx$ $= 2 \int_{1}^{4} f(x) dx + \int_{1}^{4} 6 dx$ $= 2 \int_{1}^{4} f(x) dx + 18$

Question 5

Answer: B

Explanation: $m_{\text{tangent}} = -3$ y = -3(x - 3) + 4 - 6 = -3x + 7

Question 6

Answer: B

Explanation: Pr(Z < -z) = Pr(Z > z) = 0.75

Use CAS Probability menu: inverse normal. Change the area to 0.25 because the TI-nspire calculators use Z < c and not Z > c. c = -0.6745

Question 7

Answer: B

Explanation: At x = 2, the gradient function changes from positive to negative, therefore local max on f(x)

Question 8

Answer: A

Explanation:

fog exists if ran $g \subseteq \text{dom } f$, therefore D = x < -1 or x > 3. (For fog to exists, the range of $g: (1, \infty)$)

Question 9

Answer: C

Explanation: Use CAS: $f(x) = \int (2-x)(2x+1)^2 dx = -x^4 + \frac{4}{3}x^3 + \frac{7}{2}x^2 + 2x$

Question 10

Answer: B

Explanation: Solve $\int_{k}^{\pi} \frac{2}{\pi} \cos^{2}(x) dx = 0.3$ on CAS k = 2.63

Question 11

Answer: B

Explanation:

$$\int_{0}^{6} f\left(\frac{1}{3}x\right) + 1dx = \int_{0}^{6} f\left(\frac{x}{3}\right)dx + \int_{0}^{6} 1\,dx = 12 + [x]_{0}^{6} = 12 + 6 = 18$$

Question 12

Answer: C

Explanation: $Pr(-1 < Z < 2) = Pr(\mu - \sigma < X < \mu + 2\sigma).$ $\mu + 2\sigma = 4.9$ $\mu - \sigma = 4$

Question 13

Answer: D

Explanation: Use CAS: $\frac{d}{dx}(e^{-4x}\sin(x-2))|x = 2$

Question 14

Answer: C

Explanation:

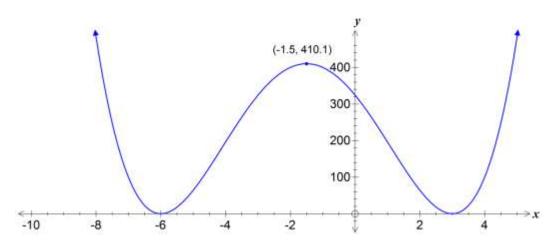
Use CAS and solve
$$\cos(2x) = -\frac{\sqrt{3}}{2}$$
, then expand to get $\pm \frac{5\pi}{12} + k\pi$, $k \in \mathbb{Z}$

Question 15

Answer: E

Explanation:

Use CAS to sketch graph and find local maximum, then $(-6, -1.5) \cup (3, \infty)$.



Question 16

Answer: E

Explanation: $y = -5e^{2(x+2)} + 2$ $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix} + \begin{bmatrix} -2 \\ 2 \end{bmatrix}$

Question 17

Answer: B

Explanation: Use CAS: Binomial pdf (20, 0.45, 5), Pr(X = 5) = 0.0365

Question 18

Answer: A

Explanation: Period $= \frac{\pi}{b} = 5\pi$, asymptote $x = \frac{\pi}{2b} = \frac{5\pi}{2}$

Question 19

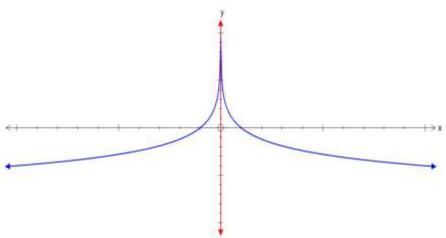
Answer: C

Explanation: $l_1 = 3 - e^{1-1} = 3 - 1 = 2$, $l_2 = 3 - e^{2-1} = 3 - e$ A = 2 + 3 - e = 5 - e

Question 20

Answer: D

Explanation: Use CAS to sketch the graph.



There is a vertical line at x = 0.

Question 21

Answer: C

Explanation:

You have to use the points of intersection and for each section it is the top graph minus the bottom graph.

Question 22

Answer: E

Explanation:

The graph has a vertical asymptote at x = a and the function lies to the right of the asymptote, sketch the graph.

SECTION 2: Analysis Questions

Question 1

a.
$$f(x) = \frac{2}{x-3} - 4 = 2(x-3)^{-1} - 4$$

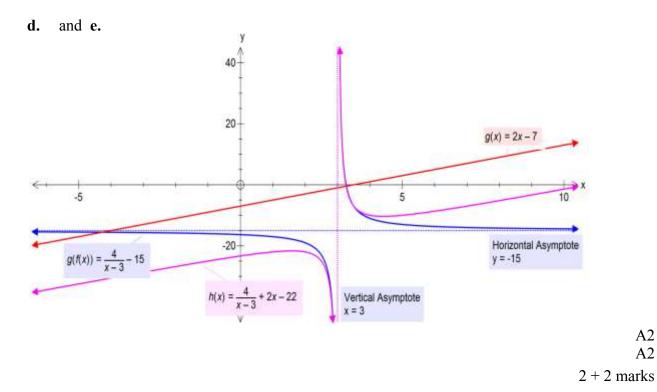
Use chain rule: $m_{\text{tangent}} = f'(x) = -2(x-3)^{-2} \times 1 = \frac{-2}{(x-3)^2}$
 $m_{\text{normal}} = \frac{(x-3)^2}{2}$
M1+A1
2 marks

b.
$$m = 2$$
, $(1, -5)$
 $y - y_1 = m(x - x_1)$
 $y + 5 = 2(x - 1)$
 $g(x) = 2x - 7$

M1+A1 2 marks

c. $g(f(x)) = g\left(\frac{2}{x-3} - 4\right) = 2\left(\frac{2}{x-3} - 4\right) - 7 = \frac{4}{x-3} - 15$, the domain is the set of all values in the domain of f (the domain of the inner function). Domain: $x \in R \setminus \{3\}$. M2+A1

3 marks



f. Reflection in the x –axis, dilation factor of 2 away from the x –axis, dilation factor of $\frac{1}{2}$ away from the y –axis, translation of 2 units to the right and a translation of 1 unit up.

equation:
$$y = -2\left(\frac{2}{2x-4-3} - 4\right) + 1 = 9 - \frac{4}{2x-7}$$
 M2+A2
4 marks

Question 2

c.

d.

e.

a. np = 212.5 np(1-p) = 31.875Solve for n & p n = 250p = 0.85

> M1+A1 2 marks

b. Binomial CDF (5, 0.9, 3, 5)= 0.991

> A1 1 mark

 $\begin{aligned} &\Pr(at \ least \ one \ lasts \ less \ than \ 200 \ hours) > 0.95 \\ &\Pr(zero \ last \ less \ than \ 200 \ hours) < 0.05 \\ &\binom{n}{0} (0.1)^0 (0.9)^n < 0.05 \\ &n > 28.433 \\ &n = 29 \end{aligned}$

	M2+A1 3 marks
normcdf(200, ∞ , 196, 4.2) = 0.17 Pr($X > m$) = 0.42 Pr($X < m$) = 0.58 m = 196.85	A1 1 mark
	M1+A1 2 marks

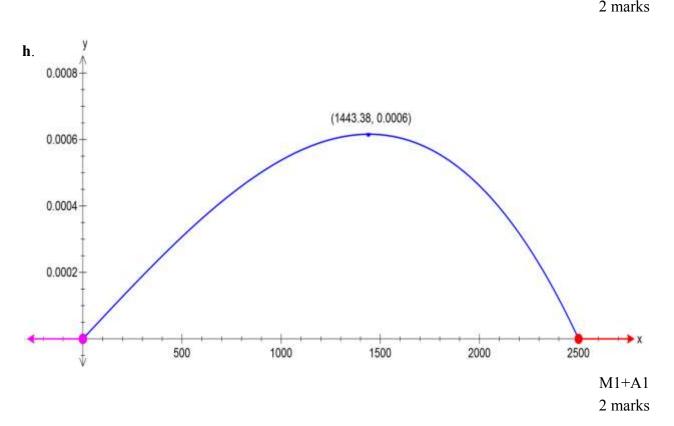
Page 8 of 12

f. $Pr(X \ge 2) \ge 0.8$ $Pr(X = 0) + Pr(X = 1) \le 0.2$ $0.6^n + {n \choose 1} \times 0.4 \times (0.6)^{n-1} \le 0.2$ n = 6.4At least 7 solewrod light globes peeds to be

At least 7 coloured light globes needs to be sold.

M2+A1 3 marks

g.
$$\int_{0}^{2500} \frac{1}{9.765625 \times 10^{12}} \left(6.25 \times 10^{6} t - t^{3} \right) dt = 1 \text{ and } f(t) \ge 0$$
M1+A1



i.
$$\mu = \int_0^{2500} \frac{t}{9.765625 \times 10^{12}} \left(6.25 \times 10^6 t - t^3 \right) dt = \frac{4000}{3}$$
 hours A1

1 mark

j.
$$\Pr\left(X > \frac{4000}{3} | X \ge 1000\right) = \frac{\Pr(X > \frac{4000}{3})}{\Pr(X \ge 1000)} = \frac{0.51202}{0.7056} = 0.7257$$

M1+A1
2 marks

Question 3

a. average value of gradient
$$=\frac{1}{1.5+1.5}\int_{-1.5}^{1.5}((x+1)^2(5-4x)) dx = 2.75$$

M1+A1 2 marks

b. $f(x) = \int f'(x) dx$ $= \int -4x^3 - 3x^2 + 6x + 5 dx$ $= -x^4 - x^3 + 3x^2 + 5x + c$ f(2) = -16 - 8 + 12 + 10 + c = -2c = 0

M1+A1 2 marks

c. $(x + 1)^2(5 - 4x) = 0$ x = -1 point of inflection – gradient is positive before and after the point. $x = \frac{5}{4}$ local maximum – gradient changes from positive before the point to negative after the point.

M2+A2 4 marks

d. Area =
$$-\int_{-1}^{0} f(x) dx + \int_{0}^{1.91964} f(x) dx - \int_{1.91964}^{2} f(x) dx = 9.21.$$

(separate integral using the *x* -ints). M1+A1
2 marks

Question 4

a.

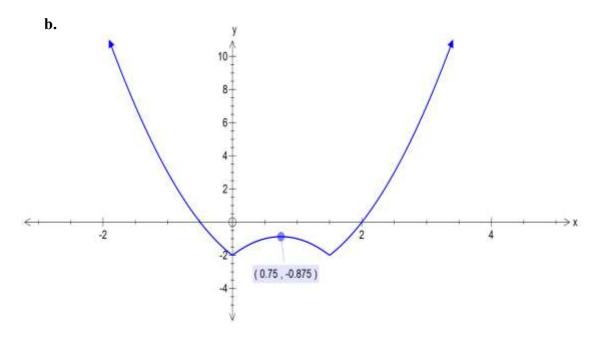
$$f(x) = \begin{cases} 2x^2 - 3x - 2, & x \le 0 \ \cup \ x \ge \frac{3}{2} \\ -2x^2 + 3x - 2, & 0 < x < \frac{3}{2} \end{cases}$$

$$2x^2 - 3x - 2 = 0 \text{ or } -(2x^2 - 3x) - 2 = 0 \Rightarrow \text{ no solutions.}$$

$$(x - 2)(2x + 1) = 0$$

$$x = 2 \text{ or } x = -\frac{1}{2}$$

M1+A2 3 marks



A2 2 marks

Question 5

a. MS = x $\Delta ANC |||\Delta AMS$ $\frac{AN}{NC} = \frac{AM}{MS}$ $\frac{200}{100} = \frac{AM}{x}$ AM = 2x mmArea = 2x(200 - 2x) = 400x - 4x^2 \text{ mm}^2

--- OR ----

Let N be the origin (0,0) then A is the point (0,200), C is the point (100,0)

And line AC has equation y = 200 - 2x.

Then point S has co-ordinates (x, 200 - x)

And the required area is $2x \times (200 - x) = 400x - 4x^2 \text{ mm}^2$

M2+A2 4 marks

b.
$$x \in (0, 100)$$

 $\frac{dA}{dx} = 400 - 8x = 0$
 $x = 50 \text{ mm}$

M1+A1 2 marks

c. $A = 100 \times 100 = 10\ 000\ \mathrm{mm}^2$

A1 1 mark