

# Victorian Certificate of Education 2016

|                |  | Letter |
|----------------|--|--------|
| STUDENT NUMBER |  |        |

# **MATHEMATICAL METHODS**

## Written examination 1

Wednesday 2 November 2016

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.15 am (1 hour)

## **QUESTION AND ANSWER BOOK**

#### Structure of book

| Number of questions | Number of questions to be answered | Number of<br>marks |
|---------------------|------------------------------------|--------------------|
| 8                   | 8                                  | 40                 |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

#### Materials supplied

- Question and answer book of 13 pages.
- Formula sheet.
- Working space is provided throughout the book.

#### **Instructions**

- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

#### At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

#### Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1 (4 marks)

**a.** Let  $y = \frac{\cos(x)}{x^2 + 2}$ .

Find  $\frac{dy}{dx}$ .

2 marks

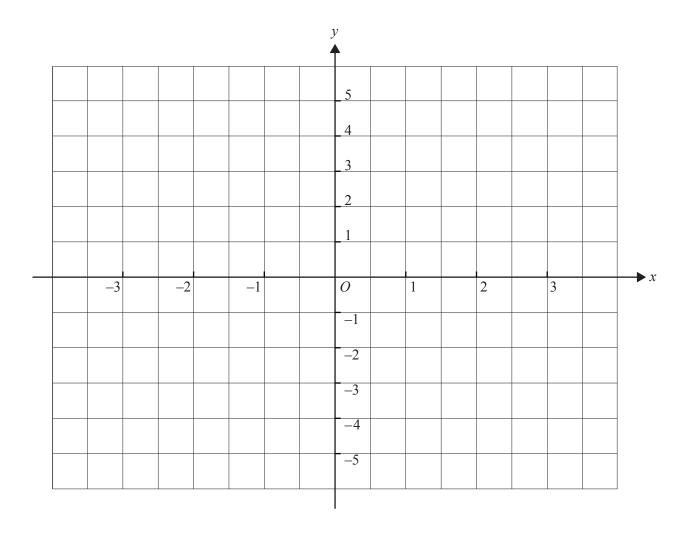
**b.** Let  $f(x) = x^2 e^{5x}$ .

Evaluate f'(1).

2 marks

# Question 2 (3 marks)

Let  $f: \left(-\infty, \frac{1}{2}\right] \to R$ , where  $f(x) = \sqrt{1-2x}$ .


| a. | Find $f'(x)$ .                                                                                                                                                           | 1 mark  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|    |                                                                                                                                                                          | _       |
|    |                                                                                                                                                                          | _       |
|    |                                                                                                                                                                          | _       |
| b. | Find the angle $\theta$ from the positive direction of the <i>x</i> -axis to the tangent to the graph of <i>f</i> at $x = -1$ , measured in the anticlockwise direction. | 2 marks |
|    |                                                                                                                                                                          | _       |
|    |                                                                                                                                                                          | _       |

### **Question 3** (5 marks)

Let 
$$f: R \setminus \{1\} \to R$$
, where  $f(x) = 2 + \frac{3}{x-1}$ .

**a.** Sketch the graph of f. Label the axis intercepts with their coordinates and label any asymptotes with the appropriate equation.

3 marks



## **Question 4** (3 marks)

A paddock contains 10 tagged sheep and 20 untagged sheep. Four times each day, one sheep is selected at random from the paddock, placed in an observation area and studied, and then returned to the paddock.

| What is the probability that the number of tagged sheep selected on a given day is zero                       | ?   |
|---------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                               |     |
|                                                                                                               |     |
| What is the probability that at least one tagged sheep is selected on a given day?                            |     |
|                                                                                                               |     |
|                                                                                                               |     |
| What is the probability that no tagged sheep are selected on each of six consecutive da                       | ys? |
| Express your answer in the form $\left(\frac{a}{b}\right)^c$ , where $a$ , $b$ and $c$ are positive integers. |     |
|                                                                                                               |     |
|                                                                                                               |     |
|                                                                                                               |     |

### **CONTINUES OVER PAGE**

#### **Question 5** (11 marks)

Let  $f:(0, \infty) \to R$ , where  $f(x) = \log_e(x)$  and  $g: R \to R$ , where  $g(x) = x^2 + 1$ .

- **a.** i. Find the rule for h, where h(x) = f(g(x)).
  - ii. State the domain and range of h. 2 marks
  - iii. Show that  $h(x) + h(-x) = f(g(x))^2$ . 2 marks

- iv. Find the coordinates of the stationary point of h and state its nature.2 marks

1 mark

| <b>b.</b> Let $k: (-\infty, 0] \to R$ , where $k(x) = \log_e(x^2 + 1)$ | b. | $, 0] \rightarrow$ | R, where | $k(x) = \log x$ | $(x^2 +$ | 1) |
|------------------------------------------------------------------------|----|--------------------|----------|-----------------|----------|----|
|------------------------------------------------------------------------|----|--------------------|----------|-----------------|----------|----|

| 2 mark |
|--------|
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
| 2 mar  |
|        |
|        |

#### **Question 6** (5 marks)

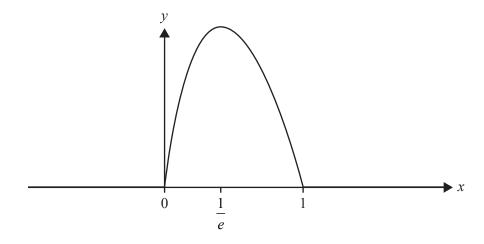
Let  $f: [-\pi, \pi] \to R$ , where  $f(x) = 2 \sin(2x) - 1$ .

a. Calculate the average rate of change of f between  $x = -\frac{\pi}{3}$  and  $x = \frac{\pi}{6}$ . 2 marks

**b.** Calculate the average value of f over the interval  $-\frac{\pi}{3} \le x \le \frac{\pi}{6}$ .

#### **Question 7** (3 marks)

A company produces motors for refrigerators. There are two assembly lines, Line A and Line B. 5% of the motors assembled on Line A are faulty and 8% of the motors assembled on Line B are faulty. In one hour, 40 motors are produced from Line A and 50 motors are produced from Line B. At the end of an hour, one motor is selected at random from all the motors that have been produced during that hour.


| Γhe selected moto                     | or is found to be faulty.                                           |                                   |
|---------------------------------------|---------------------------------------------------------------------|-----------------------------------|
| What is the probawhere $c$ is a posit | bility that it was assembled on Line A? Express your a ive integer. | nswer in the form $\frac{1}{c}$ , |
|                                       |                                                                     |                                   |
|                                       |                                                                     |                                   |

#### **Question 8** (6 marks)

Let *X* be a continuous random variable with probability density function

$$f(x) = \begin{cases} -4x \log_e(x) & 0 < x \le 1\\ 0 & \text{elsewhere} \end{cases}$$

Part of the graph of f is shown below. The graph has a turning point at  $x = \frac{1}{e}$ .



**a.** Show by differentiation that

$$\frac{x^k}{k^2} \left( k \log_e(x) - 1 \right)$$

| s an antiderivative of $x^{k-1} \log_e(x)$ , where k is a positive real number. | 2 mark |
|---------------------------------------------------------------------------------|--------|
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |

| i.  | Calculate $\Pr\left(X > \frac{1}{e}\right)$ .                                                                      | 2 m |
|-----|--------------------------------------------------------------------------------------------------------------------|-----|
|     |                                                                                                                    | -   |
|     |                                                                                                                    | -   |
|     |                                                                                                                    | -   |
|     |                                                                                                                    | -   |
|     |                                                                                                                    | -   |
| ii. | Hence, explain whether the median of X is greater than or less than $\frac{1}{e}$ , given that $e > \frac{5}{2}$ . | 2 m |
|     |                                                                                                                    | -   |
|     |                                                                                                                    | -   |
|     |                                                                                                                    | -   |
|     |                                                                                                                    | =   |



# Victorian Certificate of Education 2016

# **MATHEMATICAL METHODS**

# Written examination 1

#### **FORMULA SHEET**

#### Instructions

This formula sheet is provided for your reference.

A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

# **Mathematical Methods formulas**

## Mensuration

| area of a trapezium               | $\frac{1}{2}(a+b)h$    | volume of a pyramid | $\frac{1}{3}Ah$        |
|-----------------------------------|------------------------|---------------------|------------------------|
| curved surface area of a cylinder | $2\pi rh$              | volume of a sphere  | $\frac{4}{3}\pi r^3$   |
| volume of a cylinder              | $\pi r^2 h$            | area of a triangle  | $\frac{1}{2}bc\sin(A)$ |
| volume of a cone                  | $\frac{1}{3}\pi r^2 h$ |                     |                        |

## Calculus

| $\frac{d}{dx}(x^n) = nx^{n-1}$                        |                                                      | $\int x^n dx = \frac{1}{n+1} x^{n+1} + c,  x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $n \neq -1$                                                                          |
|-------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| $dx^{(1)}$                                            |                                                      | $\int_{0}^{\infty} \frac{1}{n+1} \frac{1}{n+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      |
| $\frac{d}{dx}\Big((ax+b)^n\Big) = an\Big(ax+b\Big)^n$ | $b)^{n-1}$                                           | $\int (ax+b)^n dx = \frac{1}{a(n+1)}(ax+b)^n dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(ax+b)^{n+1}+c, n \neq -1$                                                          |
| $\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$           |                                                      | $\int e^{ax} dx = \frac{1}{a} e^{ax} + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |
| $\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$               |                                                      | $\int \frac{1}{x} dx = \log_e(x) + c, \ x >$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                    |
| $\frac{d}{dx}(\sin(ax)) = a \cos(ax)$                 | 1                                                    | $\int \sin(ax)dx = -\frac{1}{a}\cos(ax)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) + <i>c</i>                                                                         |
| $\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$                 | s)                                                   | $\int \cos(ax)dx = \frac{1}{a}\sin(ax) + \frac{1}{a}$ | + <i>c</i>                                                                           |
| $\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)}$       | $= a \sec^2(ax)$                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      |
| product rule                                          | $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$ | quotient rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ |
| chain rule                                            | $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      |

## **Probability**

| Pr(A) = 1 - Pr(A')                     |              | $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$ |                                                       |
|----------------------------------------|--------------|-----------------------------------------------|-------------------------------------------------------|
| $Pr(A B) = \frac{Pr(A \cap B)}{Pr(B)}$ |              |                                               |                                                       |
| mean                                   | $\mu = E(X)$ | variance                                      | $var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$ |

| Prob       | ability distribution                    | Mean                                        | Variance                                                 |
|------------|-----------------------------------------|---------------------------------------------|----------------------------------------------------------|
| discrete   | $\Pr(X=x) = p(x)$                       | $\mu = \sum x  p(x)$                        | $\sigma^2 = \sum (x - \mu)^2 p(x)$                       |
| continuous | $\Pr(a < X < b) = \int_{a}^{b} f(x) dx$ | $\mu = \int_{-\infty}^{\infty} x \ f(x) dx$ | $\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$ |

# Sample proportions

| $\hat{P} = \frac{X}{n}$ |                                                        | mean                            | $E(\hat{P}) = p$                                                                                            |
|-------------------------|--------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------|
| standard<br>deviation   | $\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$ | approximate confidence interval | $\left(\hat{p}-z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p}+z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$ |