

Units 3 and 4 Maths Methods (CAS): Exam 1

Practice Exam Solutions

Stop!

Don't look at these solutions until you have attempted the exam.

Any questions?

Check the Engage website for updated solutions, then email practiceexams@ee.org.au.

Marks allocated are indicated by a number in square brackets, for example, [1] indicates that the line is worth one mark.

Question 1a

$$\frac{dy}{dx} = 2x \sin(3x) + 3x^2 \cos(3x)$$
 [2]

[1] for an application of chain rule

Question 1b

$$f(x) = xe^{-x}$$

$$f'(x) = e^{-x} - xe^{-x}$$

$$= (1 - x)e^{-x} [1]$$

$$f'(2) = (1-2)e^{-2}$$

$$= -e^{-2} [1]$$

Question 2

$$\int_{1}^{2} \frac{1}{\sqrt{2x-1}} dx = \int_{1}^{2} (2x-1)^{-1/2} dx$$

$$= [(2x-1)^{1/2}]_1^2 [1]$$

$$= (2(2) - 1)^{1/2} - (2(1) - 1)^{1/2}$$

$$=\sqrt{3}-1$$
 [1]

Question 3

Let
$$a = \frac{\theta}{2} + \frac{\pi}{4}$$

$$a \in \left[\frac{\pi}{4}, \frac{11\pi}{4}\right]$$

[1] for acknowledging the domain

Substitute a for $\frac{\theta}{2} + \frac{\pi}{4}$:

$$tan(a) = \sqrt{3}$$

$$a = \tan^{-1} \sqrt{3}$$

$$=\frac{\pi}{3},\frac{4\pi}{3},\frac{7\pi}{3}$$
 [1]

Hence,
$$\frac{\theta}{2} + \frac{\pi}{4} = \frac{\pi}{3}, \frac{4\pi}{3}, \frac{7\pi}{3}$$

$$\therefore \theta = \frac{\pi}{6}, \frac{13\pi}{6}, \frac{25\pi}{6} [1]$$

Question 4

$$e^{2x} - 6e^x + 8 = 0$$

$$(e^x - 2)(e^x - 4) = 0$$
 [1]

$$e^x = 2 \text{ or } 4$$

 $x = \ln(2) \text{ or } \ln(4) [1]$

Question 5a

 $ran_f = R$

 $dom_g \in [\frac{1}{2}, \infty)$

∴ ran_f \nsubseteq dom_g

Hence, g(f(x)) does not exist. [1]

Question 5b

$$f(g(x)) = -4(2x-1)^{3/2} [1]$$

∴ dom_{fog} $\in \left[\frac{1}{2}, \infty\right)$ [1]

 $ran_{fog} \in (-\infty, 0][1]$

Question 6a

Find the y- intercept:

$$y = ln(3 - 0) = ln(3)[1]$$

Rearrange the equation in terms of x:

$$y = \ln(3 - x)$$

$$e^y = 3 - x$$

$$x = 3 - e^y [1]$$

Find the area enclosed:

$$\int_0^{\ln(3)} 3 - e^y \, \mathrm{d}y$$

=
$$[3y - e^y]_0^{\ln(3)}$$
 [1]

$$=(3 \ln(3) - e^{\ln(3)}) - (0 - e^0)$$

$$= 3 \ln(3) - 3 + 1$$

$$=3 \ln(3) - 2 [1]$$

Question 6b

$$(x,y) \to (x,-y) \to (x,-2y) \to (x+1,-2y) \to (x',y')$$
 [1]

$$x' = x + 1$$

$$x = x' - 1$$

$$y' = -2y$$

$$y = -\frac{y'}{2}$$

$$-\frac{y'}{2} = \log_e(3 - (x' - 1))$$

$$\therefore y' = -2\log_e(4 - x') [1]$$

Question 7a i

$$E(X) = 0.2*4 + 0.4*5 + 0.3*6 + 0.1*7$$

=5.3 [1]

Question 7a ii

$$Pr(X>5.3) = Pr(X=6) + Pr(X=7)$$

$$= 0.3 + 0.1$$

$$= 0.4 [1]$$

Question 7b

$$Var(X) = 0.81$$

$$Sd(X) = \sqrt{Var(X)} = 0.9 [1]$$

$$sd(2X-1) = 4sd(X)$$

$$= 4*0.9$$

$$=3.6[1]$$

Question 8

$$f'(x) = 6x - 4$$

$$f'(2) = 12 - 4 = 8[1]$$

Gradient of the tangent at x=2 is 8.

Hence the gradient of the normal is $\frac{-1}{8}$ [1]

$$f(2) = 4$$

:the equation of normal:

$$y - 4 = \frac{-1}{8}(x - 2)$$

$$y = \frac{-1}{8}x + \frac{17}{4}[1]$$

Question 9

$$\sigma_{\widehat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

$$0.2^2 = \frac{0.1*0.9}{n} [1]$$

$$n = 2.25 [1]$$

Question 10a

$$\sigma = \sqrt{9} = 3$$

$$Pr(33 < X < 42) = Pr(36 - \alpha < X < 36 + 2\alpha)[1]$$

$$= 0.68 * 0.5 + 0.95 * 0.5$$

$$= 0.815[1]$$

Question 10b

Pr (X<39|X>36) =
$$\frac{0.68*0.5}{0.5}$$
 = 0.68 [1]

Question 11a

Let radius of the oil in container = r

$$h:r = 20:5 = 4:1$$

Hence,
$$r = \frac{h}{4}[1]$$

$$V = \frac{1}{3}$$
 base * height

$$=\frac{1}{3}*\pi r^{2}$$

$$=\frac{1}{3}*\pi(\frac{h}{4})^{2*}h$$

$$V=\frac{h^3\pi}{48}\left[1\right]$$

Question 11b

$$V(15) = \frac{15^3 \pi}{48}$$

$$V(15) = \frac{1125\pi}{16} \text{ cm}^3 [1]$$

Question 11c

$$V=\frac{h^3\pi}{48}$$

$$\tfrac{dV}{dh} = \tfrac{h^2\pi}{16} \left[1 \right]$$

$$\pi = \frac{h^2 \pi}{16}$$

$$h^2 = 16$$

$$h = \pm 4$$

$$h = 4 \text{ since } h > 0 [1]$$