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Question 1 (4 marks) 
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Question 2 (3 marks) 
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Question 3 (4 marks) 
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The graph of f is obtained by translating the graph of y = x  two units left and one 

unit down. The endpoint is therefore located at (−2,−1) . 

x-intercept occurs when y = 0 
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x-intercept occurs  at (−1,0)  

y-intercept occurs when x = 0 

       
y = 0 + 2 −1

y = 2 −1
 

y-intercept occurs at ( )12,0 −  

(1 mark) – correct endpoint   (1 mark) – correct intercepts  (1 mark) – correct shape 
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Question 4 (3 marks) 

a. Let X represent the number of girls selected in a week. 
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b. Pr(X ≥ 2) = Pr(X = 2) + Pr(X = 3) 
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c. We have a binomial distribution, so )(mean XE=  
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Question 5 (4 marks) 

 

a. Draw a diagram. 

Pr(X > 21) is shaded. 

Since Pr(Z >1) = 0.16, 
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b. Again, draw a diagram. 

Pr(24 < X < 27) is shaded. 
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c. Pr(X < 21 X < 24)  
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Question 6 (5 marks) 

 

a. L(x) = g(x) − f (x)  

        = 5 − x −
4

x
 

(1 mark) 

b.      145)( −
−−= xxxL  

    
2

4
1)('

x
xL +−=  

    0)(' =xL  for max/min. 

−1+
4

x
2

= 0

4

x
2

=1

x
2

= 4

x = ±2               reject x = −2 since x > 0

So x = 2

L(2) = 5 − 2 −
4

2

=1

 

Maximum length is 1 unit. 
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Question 7 (5 marks) 

 

a. The area required is shaded in the diagram below. 
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c.  

 

 

 

 

 

 

 

 

 

 

 

 
 

The area of the shaded rectangle (shown above) gives the average value of f between  

1 and 0 == xx . 

This rectangle has a height of k units and a width of 1 unit.       (1 mark) 

 

The larger rectangle with top left corner point at (0,1)  and bottom left corner at the 

origin has an area of 1 square unit. 

The smaller rectangle with top left corner point at 0,
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Since all three rectangles have a width of one, then 
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(using the average value formula which you must 
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Question 8 (4 marks) 
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Question 9 (8 marks) 

a. Stationary points occur when 0)(' =xf  
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b. Look at the graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The equation f (x) = n  has two solutions when the graph of y = f (x)  intersects with 

the graph of y = n  twice.  Note that the graph of y = n  is a horizontal straight line. 

The graph of y = f (x)  intersects with the graph of 0=y  (which is of course is the x-
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c. Method 1 

Point U lies between the two stationary points and occurs when 0)('' =xf .  Point U 

is a point of inflection.            (1 mark) 
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Method 2 

Gradient of tangent given by axxxf 23)(' 2
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d. axxxf 23)(' 2
−=   from part a. 

At ))(,( vfvV , the gradient of the tangent is avv 23 2
− . 

At W (w, f (w)) , the gradient of the tangent is 3w
2

− 2aw . 

We are told that the tangents at V and W have the same gradient so 

.
3

2
           So

wi.e.0  since  2)(3

)(2))((3

)(2)(3

2233

2323

22

22

22

a
w

waw

waww

waw

awaw

awwa

=+ν

≠ν≠−ν=+ν

−ν=+ν−ν

−ν=−ν

−ν=−ν

−=ν−ν

 

(1 mark) 

(1 mark) 

.
3

    So

3

3

0)3)(3(

069

0
3

23

3
23         then      

23)('  Since

22

2
2

2
2

2

a
u

a
x

ax

axax

aaxx

a
axx

a
axx

axxxf

=

=

=

=−−

=+−

=+−

−
=−

−=

 


