

YEAR 12 Trial Exam Paper

2017 MATHEMATICAL METHODS

Written examination 2

Worked solutions

This book presents:

- worked solutions, giving you a series of points to show you how to work through the questions
- ➢ mark allocations
- \blacktriangleright tips on how to approach the exam

This trial examination produced by Insight Publications is NOT an official VCAA paper for the 2017 Mathematical Methods written examination 2.

The Publishers assume no legal liability for the opinions, ideas or statements contained in this trial exam. This examination paper is licensed to be printed, photocopied or placed on the school intranet and used only within the confines of the purchasing school for examining their students. No trial examination or part thereof may be issued or passed on to any other party including other schools, practising or non-practising teachers, tutors, parents, websites or publishing agencies without the written consent of Insight Publications.

Copyright © Insight Publications 2017

THIS PAGE IS BLANK

SECTION A – Multiple-choice questions

Question 1

Answer: C

Explanatory notes

The period is given by $\frac{2\pi}{n} = \frac{2\pi}{\frac{\pi}{2}} = 4.$

The median is 3 and the amplitude is 2. Hence, the range is 3 - 2 to 3 + 2; that is, [1,5].

This can be readily checked by sketching the graph using CAS.

🜣 Edit Zoom Analysis 🔶 🛛 🗙
Sheet1 Sheet2 Sheet3 Sheet4 Sheet5
\bigvee y21=-2*sin $\left(\frac{\pi \cdot x}{2}\right)$ +3
y22:0
□y23:□
□y24:□
y25:
y 26: 0
7-3
6
5
4
3 · / · / ·
- Co
Rad Cplx (III

Answer: B

Explanatory notes

Using CAS to obtain the inverse function gives the inverse function as $y = \frac{1}{x^2} + 3$.

And since the range of the original becomes the domain of the inverse, the domain is R^+ . So the answer is option B.

🗢 Edit Action Interactive 🖂							
0.5 1 ♣2 ↔	► Jdx+	Simp	<u>fdx</u>	₩	v >		
solve $\left(x = \frac{1}{\sqrt{y-3}}, y\right)$							
$\left\{ y = \frac{1}{x^2} + 3 \right\}$							
Math1	Line	-	V	π			
Math1 Math2	Line		√∎ ln	π log_□	▼		
Math1 Math2 Math3	Line	e x ²	√■ ln x ⁻¹	π log _m [] log ₁₀ (II)	⇒ ¶√⊡ solve(
Math1 Math2 Math3 Trig	Line	e e x ² toDMS	√■ ln x ⁻¹	π log _∎ □ log ₁₀ (Ⅲ) { }	⇒ √□ solve(()		
Math1 Math2 Math3 Trig Var abc	Line	e x ² toDMS cos	√■ ln x ⁻¹ {■ tan	π log _m [] log ₁₀ (]]) { }	⇒ √□ solve(() r		
Math1 Math2 Math3 Trig Var abc	Line	e a x ² toDMS cos	√■ h x ⁻¹ {■ tan	π log _m [] log ₁₀ (II) { } ο	⇒ √□ solve(() r EXE		

• You could also use the draw inverse function on the calculator to sketch the inverse.

Answer: C

Explanatory notes

The roots (*x*-intercepts) are at x = b, x = c and x = d, with a repeated root at x = d. So, the factors are (x-b), (x-c) and $(x-d)^2$.

• Don't be confused by the fact that the roots at b and c are negative.

Question 4

Answer: B

Explanatory notes

Using CAS to find the equation of the tangent line to the curve at x = -2 gives y = 12x + 16, whereby (-1, 4) satisfies this equation.

0	Edit	Actio	n Inter	active		X			
0,5 <u>1</u> ♣ <u>1</u>	b	fdx Jdx	Simp	ſdx,	+	v			
tanL	tanLine(x ³ , x, -2)								
12•x+16									
p									
Mati	h1	Line	-	√■	π	•			
Mati Mati	h1 h2	Line		√ ■ In	π log_D	⇒ •			
Mati Mati Mati	h1 h2 h3	Line	e x ²	√ ■ ln x ⁻¹	π log _m [] log ₁₀ (II)	⇒ √□ solve(
Mati Mati Mati	h1 h2 h3 g	Line	e x ² toDMS	√■ In x ⁻¹	π log _m [] log ₁₀ (]]) { }	▼ ▼□ solve(()			
Mati Mati Mati Tris Var	h1 h2 g r	Line C	e e x ² toDMS cos	√■ ln x ⁻¹ {	π log _m [] log ₁₀ (]]) { }	▼ ▼□ solve(() *			
Mati Mati Mati Var abo	h1 h2 h3 g r c	Line Line	e x ² toDMS cos	√■ In x ⁻¹ {■ tan	π log _m □ log ₁₀ (II) { } °	⇒ √□ solve(() × EXE			

Answer: B

Explanatory notes

Reflect the graph in the line y = x to get the graph of the inverse and then reflect in the *x*-axis to get the graph of $y = -f^{-1}(x)$.

Question 6

Answer: A

Explanatory notes

Using CAS gives

solve $(x^3 - a \cdot x^2 + 6 \cdot x - 7 = -3 x = 2 $ (a=4)							
р							
					•		
Math1	Line	-	$\sqrt{\blacksquare}$	π	¢		
Math2	Define	f	g	i	00		
Math3	solve(dSlv	,	{ 3:3	Τ		
Trig	<	>	()	{}	[]		
Var	≤	≥	=	ŧ	2		
	+	Ē	ł	ans	EXE		
Alg	Decima	al	Real	Rad) (III)		

Answer: D

Explanatory notes

Sketching the graph using CAS shows that the range is from the right endpoint to the maximum turning point.

Question 8

Answer: D

Explanatory notes

For the average value of the function to be zero, the area bounded by the curve and the *x*-axis over the interval [-p, 0] has to equal $\frac{81}{8}$.

Therefore

$$\frac{1}{2}p^2 = \frac{81}{8}$$
$$p^2 = \frac{81}{4}$$
$$p = \frac{9}{2}$$

Answer: D

Explanatory notes

To be a probability density function, the value of a is 14 as the area under the curve must be 1.

Because the function is symmetrical, E(X) occurs in the centre, so E(X) = 11.

Tip

Remember to look for symmetry.

Question 10

Answer: E

Explanatory notes

•

$$\sigma = \sqrt{\frac{p(1-p)}{n}}$$
$$\frac{1}{625} = \sqrt{\frac{\frac{1}{5} \times \frac{4}{5}}{n}}$$

Answer: D

Explanatory notes

The 95% confidence interval for p is

$$\left(\hat{p}-1.96\times\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p}+1.96\times\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$$

Tip

• The confidence intervals for 90% and 95% are worth remembering:

90%
$$\left(\hat{p} - 1.65 \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p} + 1.65 \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right)$$
95%
$$\left(\hat{p} - 1.96 \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p} + 1.96 \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right)$$

Question 12

Answer: D

Explanatory notes

$$np = 3 \text{ and } npq = \frac{9}{4}.$$

 $\Rightarrow 3q = \frac{9}{4}$
So $q = \frac{3}{4}$
 $\therefore p = \frac{1}{4}$

Hence, $\Pr(X=1) = {\binom{12}{1}} (p)^1 (q)^{11} = 12 {\binom{1}{4}}^1 {\binom{3}{4}}^{11}.$

Answer: A

Explanatory notes

$$\Pr(X < 46) = \Pr\left(Z < \frac{46 - 60}{7}\right)$$
$$= \Pr(Z < -2)$$
$$= \Pr(Z > 2), \text{ using symmetry}$$

Question 14

Answer: D

Explanatory notes

 $y = e^{2x+4} - 3$ can be written as $y+3 = e^{2x+4}$ and therefore y' = y+3 and x' = 2x+4.

So y = y' - 3 and $x = \frac{1}{2}(x' - 4) = \frac{1}{2}x' - 2$. The matrix equation that corresponds to these equations is option A.

Question 15

Answer: D

Explanatory notes

Using the chain rule

$$\frac{dy}{dx} = \frac{1}{\sqrt{f(2x)}} \times \frac{1}{2\sqrt{f(2x)}} \times f'(2x) \times 2$$
$$= \frac{f'(2x)}{f(2x)}$$

Or, using logarithmic laws, the equation for y can be written as $y = \frac{1}{2}\log_e(f(2x))$.

So
$$\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{f(2x)} \times f'(2x) \times 2$$
$$= \frac{f'(2x)}{f(2x)}$$

Answer: E

Explanatory notes

Using CAS gives

Edit Action Interactive									
$ \begin{array}{c} 0.5 \\ 1 \rightarrow 2 \end{array} \begin{array}{c} 0 \\ J \end{array} \hspace{0.5cm} b \hspace{0.5cm} \models \hspace{0.5cm} \int \hspace{-0.5cm} \int \hspace{-0.5cm} dx \hspace{0.5cm} \downarrow \hspace{0.5cm} J \end{array} \hspace{0.5cm} Simp \hspace{0.5cm} \underbrace{f \hspace{0.5cm} dx \hspace{0.5cm} \downarrow} \hspace{0.5cm} \checkmark \hspace{0.5cm} \checkmark \hspace{0.5cm} \downarrow \hspace{0.5cm} \downarrow \hspace{0.5cm} \checkmark \hspace{0.5cm} \checkmark \hspace{0.5cm} \checkmark \hspace{0.5cm} \downarrow \hspace{0.5cm} \downarrow \hspace{0.5cm} \checkmark \hspace{0.5cm} \checkmark \hspace{0.5cm} \downarrow \hspace{0 mm} \downarrow \hspace$									
$\int_{2}^{5} 2/x$	$\int_{2}^{5} 2/x dx$								
e ^{1/2()}	$2 \cdot \ln(5) - 2 \cdot \ln(2)$ e ^{1/2(2 \cdot \ln(5) - 2 \cdot \ln(2))} <u>5</u>								
þ					2				
Math1	Line	-	V	π	¢				
Math2	0	e■	ln	i	90				
Math3				\int_{0}^{0}	lim				
Trig	[[]]]	[8]		Σ□	Ī				
yar ahr	sin	COS	tan	θ	t				
	+	E	4	ans	EXE				
Alg	Standa	ard	Real	Rad	(11)				

Question 17

Answer: B

Explanatory notes

$$\int_{-1}^{2} (3 - f(x)) dx = \int_{-1}^{2} 3 dx - \int_{-1}^{2} f(x) dx$$
$$= [3x]_{-1}^{2} - 4$$
$$= 6 + 3 - 4$$
$$= 5$$

Answer: C

Explanatory notes

Using CAS, the area required can be seen as the shaded region (shown left).

Use the main menu to then find the exact value of the *x*-intercept (shown right).

Hence, the area is

🜣 Edit Action Interactive 🛛 🖂									
	$ \begin{array}{c c} 0.5 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$								
$_{\rm solve}(\epsilon$,2•x_2	2•e ^x −	3=0,x	,)					
			{x	x=ln (3	<pre>>}</pre>				
$-\int_{0}^{\ln(3)}$)e ^{2•x}	-2•0	⁷ –3dx						
				3•ln (3)				
Þ									
Math1	Line	-	√■	π	÷				
Math2	0	e	ln	i	00				
Math3				\int_{0}^{0}	lim				
Trig	[0]	[8]	[88]	Σ□	Ī				
Var	sin	COS	tan	θ	t				
abc			8	-	-				
- T	+	-8		ans	EXE				
Alg	Standa	ard	Real	Rad					

Answer: D

Explanatory notes

The rate of change means $\frac{dy}{dx}$.

Using CAS gives

diff 🛛 🗙							
O Differentiation							
🔵 Der	ivative	at valu	е		[
Expression: $2e(e^{(x)-1})$							
Variabl	e:	x					
Order:	Order: 1						
Value:		O					
ОК				Can	cel		
				_			
Math1	Line		$\sqrt{\blacksquare}$	π	¢		
Math2		e■	ln	log∎□	VO		
Math3		X ²	X ⁻¹	log ₁₀ (II)	solve(
Trig		toDMS	{	{}	()		
Var	sin	0.06	tan	0	r		
abc	SIII	cos	cos tan				
	-	En	G	ans	EXE		
	-		-				

<pre>Contractive Contractive Contractive</pre>							
Mat	th1	Line	-	√■	π	¢	
Mat	th2	0	e	ln	i	90	
Mat	th3		d		1	lim	
Tr	ig	[0]			Σ□		
Va	ar	sin	COS	tan	θ	t	
a	V	+	Ę	ł	ans	EXE	
Alg		Standa	ard	Real	Rad	(11)	

Question 20

Answer: C

Explanatory notes

The graph drawn is the graph of the derivative; that is, the graph of the gradient function. The graph has a positive value over this domain and it does not have an *x*-intercept or change signs (therefore there are no turning points and stationary points of inflexion over this interval).

SECTION B

Question 1a.

Worked solution

Maximum height is 4 metres.

Mark allocation: 1 mark

• 1 answer mark

Question 1b.

Worked solution

The gradient function is given by $\frac{dy}{dx} = 2\sin\left(\frac{\pi x}{3}\right) \times \frac{\pi}{3} = \frac{2\pi}{3}\sin\left(\frac{\pi x}{3}\right)$.

The range of this function is $\left[-\frac{2\pi}{3}, \frac{2\pi}{3}\right]$, so the gradient is always less than or equal to $\frac{2\pi}{3}$.

Mark allocation: 1 mark

• 1 mark for finding the range of the derivative

Question 1c.

Worked solution

Using CAS gives

So the area is 12 square metres.

Mark allocation: 1 mark

• 1 mark for correct answer

• Be guided by the number of marks allocated for the question. In this case there is 1 mark, so there is no need to show any working; just use CAS to find the answer.

Question 1d.

Worked solution

Two-thirds of the area is 8 and we want half of that; that is, 4 square units, to be between 3 and 3+c.

So set up the integral and use CAS to find *c*.

Contractive Edit Action Interactive $\begin{array}{c} & \text{Edit Action Interactive} \\ \hline \begin{array}{c} & & \\ &$						
Math1	Line	-	V	π	÷	
Math2	0	e	ln	i	90	
Math3				\int_{a}^{a}	lim	
Trig	[[]]	[8]		Σ□	To	
Var	sin	cos	tan	θ	t	
	+	Ē	4	ans	EXE	
Alg	Decima	al	Real	Rad	(III)	

Hence, c = 1.12.

Mark allocation: 2 marks

- 1 method mark for setting an integral equal to either 8 or 4
- 1 answer mark for the correct value of *c*

Question 1e.

Worked solution

AB is the line drawn normal to the curve at a point when y = 1.

First, solve
$$2-2\cos\left(\frac{\pi x}{3}\right) = 1$$
 for $x \in [3,6]$ for x, to get $x = 5$.

normal $\left(2-2\cdot\cos\left(\frac{X\cdot\pi}{3}\right), x, 1\right)$ $\frac{-\sqrt{3}\cdot x}{\pi} + \frac{\sqrt{3}}{\pi} + 1$							
solve $\left(2-2\cdot\cos\left(\frac{x\cdot\pi}{3}\right)=1 \mid 3\le x\le 6\right)$ $\{x=5\}$							
Mat	th1	Line	-	√■	π	÷	
Mat	th1 th2	Line Define		√■ g	π i	¢ %	
Mat Mat	th1 th2 th3	Line Define solve(f dSlv	√■ 8	π i	⇒ ∞ 	
Mar Mar Mar	th1 th2 th3 ig	Line Define solve(<	f dSlv	√■ 8 ,	π i {:::::::::::::::::::::::::::::::::::	¢ ∞ 	
Mat Mat Mat	th1 th2 th3 ig ar	Line Define solve(≺ ≤	-	√■ 8 , () =	π i {=;= { } ≠	⇒ ∞ [] ∠	
Mat Mat Mat	th1 th2 th3 ig ar bc	Line Define solve(< s	f dSlv ≻ ≥	√■ 8 , () =	π i {":-:- { } ≠ ans	⇒ ∞ [] ∠ EXE	

Then, use CAS to find the equation of the normal line drawn at x = 5.

The equation of the normal is $y = \frac{\sqrt{3}x}{\pi} - \frac{5\sqrt{3}}{\pi} + 1.$

Mark allocation: 2 marks

- 1 method mark for setting $2-2\cos\left(\frac{\pi x}{3}\right)=1$ for $x \in [3,6]$ to get x=5
- 1 answer mark for the equation of the normal

17

Question 1f.

Worked solution

$$\frac{dy}{dx} = \frac{2\pi}{3} \sin\left(\frac{\pi x}{3}\right)$$

At $x = a$, $\frac{dy}{dx} = \frac{2\pi}{3} \sin\left(\frac{\pi a}{3}\right)$
 $\Rightarrow \frac{dy}{dx} (\text{normal}) = \frac{-1}{\frac{2\pi}{3} \sin\left(\frac{\pi a}{3}\right)}$

Gradient of normal line passing through (3,0) and $\left(a, 2-2\cos\left(\frac{\pi a}{3}\right)\right)$ is $\frac{2-2\cos\left(\frac{\pi a}{3}\right)}{a-3}$.

So
$$\frac{2-2\cos\left(\frac{\pi a}{3}\right)}{a-3} = \frac{-1}{\frac{2\pi}{3}\sin\left(\frac{\pi a}{3}\right)}$$
$$\frac{a-3}{2-2\cos\left(\frac{\pi a}{3}\right)} = -\frac{2\pi}{3}\sin\left(\frac{\pi a}{3}\right)$$

🗢 Edit	t Actio	n Inter	ractive		X				
$ \stackrel{0.5}{\overset{1}{\rightarrowtail}2} \stackrel{1}{{}} \stackrel{fdx}{\underset{fdx}{}} Simp \stackrel{fdx}{\underbrace{fdx}{}} V \stackrel{1}{} \stackrel{1}{} \stackrel{1}{} V $									
solve	solve $\left(\frac{a-3}{2-2\cdot\cos\left(\frac{\pi\cdot a}{3}\right)}=-\frac{2\cdot\pi}{3}\cdot\sin\right)$								
$ \left\{ a=1.034152508, a=3, a=4.96 \right\} $ $ \left\{ a=\frac{2 \cdot \pi}{3} \cdot \sin\left(\frac{\pi \cdot a}{3}\right) \mid 0 \le a \le 6, a \right\} $ $ \left\{ 52508, a=3, a=4.965847492 \right\} $									
Math1	Line	-	√■	π	÷				
Math2	Define	f	g	i	00				
Math3	solve(dSlv	,	{	Т				
Trig	<	>	()	{}	[]				
abc	≤	≥	=	ŧ	2				
	+	Ē	4	ans	EXE				
Ala	Standa	ard	Real	Rad	(11)				

Mark allocation: 3 marks

- 1 method mark for getting the gradient of the normal line $\frac{dy}{dx}$ (normal) = $\frac{-1}{\frac{2\pi}{3}\sin\left(\frac{\pi a}{3}\right)}$
- 1 method mark for setting it equal to $\frac{-1}{f'(a)}$
- 1 answer mark for finding a = 4.966

Question 1g.

Worked solution

Let the longest strut be located at x = a, $y = 2 - 2\cos\left(\frac{\pi a}{3}\right)$.

$$\frac{dy}{dx}(x=a) = \frac{2\pi}{3}\sin\left(\frac{\pi a}{3}\right)$$
$$\therefore m_{\text{normal}} = \frac{-1}{\frac{2\pi}{3}\sin\left(\frac{\pi a}{3}\right)}$$

The equation of the normal is $y - \left(2 - 2\cos\left(\frac{\pi a}{3}\right)\right) = \frac{-1}{\frac{2\pi}{3}\sin\left(\frac{\pi a}{3}\right)}(x-a).$

To find the *x*-intercept, let y = 0.

$$\Rightarrow -\left(2 - 2\cos\left(\frac{\pi a}{3}\right)\right) = \frac{-1}{\frac{2\pi}{3}\sin\left(\frac{\pi a}{3}\right)}(x-a)$$
$$\Rightarrow x_{\text{int}} = a + \frac{2\pi}{3}\sin\left(\frac{\pi a}{3}\right)\left(2 - 2\cos\left(\frac{\pi a}{3}\right)\right)$$

Strut extends from $(x_{int}, 0)$ to $\left(a, 2 - 2\cos\left(\frac{\pi a}{3}\right)\right)$.

Length of strut is
$$d = \sqrt{\left(x_{int} - a\right)^2 + \left(2 - 2\cos\left(\frac{\pi a}{3}\right)\right)^2}$$
.
$$d = \sqrt{\left[\frac{2\pi}{3}\sin\left(\frac{\pi a}{3}\right)\left(2 - 2\cos\left(\frac{\pi a}{3}\right)\right)\right]^2 + \left(2 - 2\cos\left(\frac{\pi a}{3}\right)\right)^2}$$

🗢 Edit	t Actio	n Inter	active		X	🗢 Edit	t Actio	n Inter	ractive		X
0.5 1 ♣2 ↔	►	Simp	<u>fdx</u>	•₩	v >	0.5 1 ♣2 (b)	►	Simp	<u>Ídx</u>	• ₩	T P
$\frac{1}{dx}$ $\left[2-\frac{1}{dx}\right]$	2•cos	3)	J			$\frac{1}{dx}$ [2-	2•cos	3)	J		
(<u> </u>		2•sin	$\left(\frac{\mathbf{x}\cdot\boldsymbol{\pi}}{3}\right)$	•π	(2·sin	$\left(\frac{\mathbf{x}\cdot\boldsymbol{\pi}}{3}\right)$	•π
fMax ,	$\left(\frac{2\cdot\pi}{3}\right)$	•sin	$\left[\frac{\pi \cdot x}{3}\right]$	(2-2.	c►	fMax	$\int (\frac{2\cdot\pi}{3})$	•sin	$\left[\frac{\pi \cdot x}{3}\right]$	(2-2.	c►
{MaxV	alue=6	6.249	60726	6, x=	3	⊲ lue=6	6.249	60726	6, x=	3.917	9}
Ш											V
Math1	Line	-	√■	π	Þ	Math1	Line	-	$\sqrt{\blacksquare}$	π	¢
Math2	sin	cos	tan	i	00	Math2	sin	cos	tan	i	90
Math3	sin-1	cos ⁻¹	tan-1	θ	t	Math3	sin-1	cos ⁻¹	tan-1	θ	t
Trig	sinh	cosh	tanh	0	r	Trig	sinh	cosh	tanh	0	F
Var	sinh ⁻¹	cosh ⁻¹	tanh ⁻¹			Var	sinh ⁻¹	cosh ⁻¹	tanh ⁻¹		
abc		B	8		EVE	abc		B	-		EVE
A .	+		- <u>B</u>	ans	EXE	· ·	+		-12	ans	EXE
Alg	Standa	ard	Cplx	Rad	(111	Alg	Standa	ard	Cplx	Rad	(11)

Using CAS to find the maximum value of this function gives

 $d_{\text{max}} = 6.2496$ at a = 3.9179, so x = 3.9179.

So the longest strut is 6.2496 metres in length and is positioned at (3.9179, 3.1450).

						1						
🗢 Edit	t Actio	n Inter	ractive		X		🗢 Edit	t Actio	n Inter	ractive		X
0.5 1 ➡2 ↔	► ∫dx→	Simp	<u>fdx</u>	• ₩	v >			► [fdx] Jdx↓	Simp	ſdx ,	+	v >
1 IVIIII V	anue-u	∪, x—0	. 024	00100	47			anue-	∪, x-0	. 524	00100	47 💼
$fMin\left(\sqrt{\left(\frac{2\cdot\pi}{3}\cdot\sin\left(\frac{\pi\cdot x}{3}\right)\cdot\left(2-2\cdot c\right)}\right)\right)$							$fMin \left(\sqrt{\frac{1}{2}} \right)$	$\left(\frac{2\cdot\pi}{3}\right)$	•sin(2	$\left(\frac{\tau \cdot \mathbf{x}}{3}\right) \cdot \left(\frac{\tau \cdot \mathbf{x}}{3}\right)$	2-2.0	
		{Min	Value	=0, x=	6}				{Min	Value	=0,x=	6}
fMax	$\left(\frac{2\cdot\pi}{3}\right)$	$\cdot \sin\left(\frac{1}{2}\right)$	$\left(\frac{\pi \cdot x}{3}\right)$.	(2-2.	c►		fMax	$\left(\frac{2\cdot\pi}{3}\right)$	•sin($\left(\frac{\pi \cdot x}{3}\right)$.	(2-2.	c 🕨
{MaxV	alue=6	. 249	60726	66, x=	3 🕨 🔛		⊲ lue=6	6.249	60726	6, x=	3.917	9}
							D					
	-											_
Math1	Line	-	√■	π	⇒		Math1	Line	-	√■	π	Þ
Math2	Define	f	g	i	00		Math2	Define	f	g	i	00
Math3	1 (0	(Math3	1		0	(
Tria	solve(dSlv	,	15,5			Tria	solve(dSlv	'	15,5	
	<	\rightarrow	()	{ }	[]			<	\rightarrow	()	{ }	[]
Var		~	-	+			Var		~	-	+	
abc	2	2	-	Ŧ	2		abc	<u> </u>	2	_	+	4
- T	+	Ē	ł	ans	EXE		-	+	Ē	ł	ans	EXE
Alg	Standa	ard	Real	Rad	(III)		Alg	Standa	ard	Real	Rad	(III

Mark allocation: 3 marks

• 1 method mark for finding the equation of the normal line at x = a,

$$y - \left(2 - 2\cos\left(\frac{\pi a}{3}\right)\right) = \frac{-1}{\frac{2\pi}{3}\sin\left(\frac{\pi a}{3}\right)}(x - a)$$

• 1 method mark for finding the function that gives the length of any strut drawn normal

to the curve at
$$x = a$$
, $d = \sqrt{\left[\frac{2\pi}{3}\sin\left(\frac{\pi a}{3}\right)\left(2 - 2\cos\left(\frac{\pi a}{3}\right)\right)\right]^2 + \left(2 - 2\cos\left(\frac{\pi a}{3}\right)\right)^2}$

• 1 answer mark for maximum length of 6.2496 metres at (3.9179, 3.1450)

Question 2a.i.

Worked solution

$$E(X) = 120$$

$$E(X) = \int_0^a x \cdot \frac{2x}{a^2} dx$$

$$= \int_0^a \frac{2x^2}{a^2} dx$$

$$= \frac{1}{a^2} \left[\frac{2x^3}{3} \right]_0^a$$

$$= \frac{1}{a^2} \cdot \frac{2a^3}{3} = \frac{2a}{3}$$

$$\Rightarrow \frac{2a}{3} = 120, \ a = 180$$

Mark allocation: 2 marks

•

- 1 method mark for setting up the integral for *E*(*X*)
- 1 answer mark for the correct antiderivative and evaluation leading to a = 180

This is a 'show that' question, so appropriate working must be shown.

Question 2a.ii.

Worked solution

$$\Pr(X > 150) = \int_{150}^{180} \frac{2x}{180^2} \, dx$$

Using CAS gives $Pr(X > 150) = \frac{11}{36}$.

🗢 Edit	Actio	n Inter	active		X						
0.5 <u>1</u> 1→2	► [fdx-]	Simp	<u>fdx</u>	• ₩	v >						
\int_{1501}^{100}	$\int_{150}^{180} \frac{2 \cdot x}{180^2} dx$										
$\frac{11}{36}$											
\int_{1501}^{180}	$\int_{150}^{180} \frac{2 \cdot x}{180^2} dx$										
þ		0	. 305	55555	56						
Math1	Line	-	$\sqrt{\blacksquare}$	π	÷						
Math2	0	e	ln	i	90						
Math3				\int_{a}^{a}	lim						
Trig	[]]	[8]		Σ□	Ī						
Var	sin	COS	tan	θ	t						
	+	Ē	4	ans	EXE						
Alg	Decima	al	Real	Rad	(III)						

Mark allocation: 2 marks

- 1 method mark for setting up the integral
- 1 answer mark for $\frac{11}{36}$

• This question is worth 2 marks, so you must also provide a solution step.

Question 2b.

Worked solution

 $X_{\rm RF} \sim N(\mu = 25, \sigma = 5)$

Using CAS gives $Pr(X_{RF} < 18) = 0.0808$.

🗘 Edi	t Actio	n Inter	ractive		X				
0.5 <u>1</u> 1→2	∫► fdx- Jdx+	Simp	<u>Ídx</u>	₩	v >				
					$\frac{11}{36}$				
$\int_{150}^{180} \frac{2 \cdot x}{180^2} dx$									
		0	. 305	55555	56				
normC	Df (-∞	,18,5	5,25)						
		0.	0807	56659	23				
þ									
Math1	Line	-	$\sqrt{\blacksquare}$	π	Þ				
Math1 Math2	Line		√■ ln	π i	¢ %				
Math1 Math2 Math3	Line	е"	√∎ In	π i	⇒ ∞ lim				
Math1 Math2 Math3 Trig				π i ∫	⇒ ∞ ⊒→□				
Math1 Math2 Math3 Trig Var	Line		√■ In 	π i ∫	 S im im im im 				
Math1 Math2 Math3 Trig Var abc	Line	e d d cos	√ In d d d 0 (8 8 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{\pi}{\int_{-}^{0}}$					
Math1 Math2 Math3 Trig Var abc	Line		√■ In <u>d0</u> (π i \int_{-}^{0} Σ θ ans	∞ ⇒ ⇒ ⇒ ⇒ t EXE				

Mark allocation: 2 marks

- 1 method mark for $X_{\rm RF} \sim N(\mu = 25, \sigma = 5)$
- 1 answer mark for 0.0808

• Be careful to define the distribution using a new variable. Something like X_{RF} is suitable.

Question 2c.

Worked solution

Using symmetry, the mean is 24 mm.

$$X_{\rm II} \sim N(\mu = 24, \sigma = ?)$$
, where $\Pr(X_{\rm II} < 20) = 0.1$.

Using CAS gives $\sigma = 3.12$.

1070	Edit	Anti-	a lastas	ontiun						
v	cuit	ACTIO	n inter	active						
0.5 <u>1</u> 1⇒2										
$\int_{150}^{100} \frac{2 \cdot x}{180^2} dx$										
0.3055555556										
norr	nCE)f (−∞	, 18, 5	5,25)						
			0.	0807	56659	23				
solv	e(n	ormCI)f(–∞	, 20, 2	x, 24)	-				
			{x=3	. 121:	21658	4}				
Mat	h1	Line	-	√■	π	÷				
Mat Mat	h1 h2	Line		√∎ ln	π i	⇒ ∞				
Mati Mati Mati	h1 h2 h3	Line	e"	√∎ In	π i	⇒ ∞ lim				
Mati Mati Mati	h1 h2 h3 g		e d d		π i ∫	⇒ ∞ ≣⇒□				
Mati Mati Mati Tri Va	h1 h2 h3 g	Line 0	e" <u>d</u> []]	√■ In 	π i \int_{-}^{0}					
Mati Mati Mati Tri Va	h1 h2 h3 g r	Line Line	e• d d () cos	√■ In []] tan	π i \int_{-}^{0}					
Mati Mati Mati Tri Va abu	h1 h2 h3 g r c	Line Line sin	e d d cos	√■ In d0 (00) (00) (00) (00) (00) (00) (00) (π i ∫ Ω Θ ans					

Mark allocation: 3 marks

- 1 answer mark for finding the mean
- 1 method mark for setting up an integral to find the standard deviation
- 1 answer mark for the correct standard deviation

• Be careful to use a different notation for defining the distribution.

Question 2d.i.

Worked solution

$$Pr(JJ | length < 18) = \frac{Pr(X_{JJ} < 18)}{Pr(JJ) \times Pr(X_{JJ} < 18) + Pr(RF) \times Pr(X_{RF} < 18)}$$
$$= \frac{0.7 \times 0.027235}{0.7 \times 0.027235 + 0.3 \times 0.0808}$$
$$= 0.440$$

Mark allocation: 3 marks

- 1 method mark for recognising conditional probability or for using a tree diagram and for finding $Pr(X_{JJ} < 18) = 0.7 \times 0.027235$
- 1 method mark for having a denominator that involves 0.7 multiplied by one probability and 0.3 multiplied by another
- 1 answer mark for 0.440

Question 2d.ii.

Worked solution

$$p = 0.7, \ n = 500$$

$$E(\hat{p}) = p = 0.7, \ \sigma = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.7 \times 0.3}{500}}$$

$$\hat{P} \sim N(\mu = 0.7, \ \sigma = 0.0205)$$

 $\Pr(\hat{P} > 0.75) = 0.0073$

Mark allocation: 2 marks

- 1 mark for identifying parameters $\mu = 0.7$, $\sigma = 0.0205$
- 1 mark for answer $Pr(\hat{P} > 0.75) = 0.0073$ (although if the rounded value for σ is used this will give $Pr(\hat{P} > 0.75) = 0.0074$, so accept either 0.0073 or 0.0074)

Question 3a.i.

Worked solution

Using C	CAS, tl	ne grae	dient	of PA	is $\frac{6}{a-2}$				
양 Edit	t Actio	n Inter Simp	factive	• +	▲ ∀ X				
simplify $\left(\frac{-6-\frac{6}{2-a}}{3-a}\right)$									
þ				a	<u>6</u> -2				
Math1	Lino	_	1	π					
Math2			γ=		-				
Math3		e=	In	log∎⊓	Ϋ́□				
Tric		X ²	X ⁻¹	log ₁₀ (∎)	solve(
Van		toDMS	{	{ }	()				
var	sin	cos	tan	0	r				
	+	Fa	G.	ans	EXE				

Mark allocation: 1 mark

• 1 mark for answer in simplified form

Question 3a.ii.

Worked solution

We need to solve $f'(x) = \frac{6}{a-2}$ for x.

Using CAS, this gives

 $x = \pm \sqrt{a - 2} + 2$

Since x > 2, $x = \sqrt{a-2} + 2$.

Mark allocation: 2 marks

- 1 method mark for solving $f'(x) = \frac{6}{a-2}$ for x
- 1 answer mark for correct answer (the negative answer must be discarded)

• Always consider the domain when validating solutions.

Question 3b.i.

Worked solution

Set up and evaluate using CAS to give an answer of 6.

Edit Action Interactive 0.5 1 b fdx Simp fdx ▼ ↓ (X-=(a=2) 72, X-(a-2) $\operatorname{solve}\left(\frac{6}{a-2}=\frac{d}{dx}\left(\frac{6}{2-x}\right),x\right)$ $\{x=-\sqrt{a-2}+2, x=\sqrt{a-2}+2\}$ simplify $\left(-\int_{3}^{e+2} \frac{6}{2-x} dx\right)$ 6 Math1 름 Line $\sqrt{\blacksquare}$ ⇒ π Math2 0 e■ i ln 00 Math3 $\frac{d^{\square}}{d \blacksquare}$ ∫____ $\frac{d}{d}$ lim ∎→□ Trig [[]] [8] [88] Σ□ Π□ Var \sin COS tan θ t abc Ē. ם EXE ans Ŧ -Alg Standard Real Rad

Mark allocation: 1 mark

• 1 mark for correct answer

Question 3b.ii.

Worked solution

Set up and solve using CAS. Note that b > 2, so $b = e^{-1} + 2$.

🙃 Edit	Actio	n Inter	rective		X
0,5 1	fdx	Simo	fdx.a		
1 →2 (?)	Jdx+	auth	-	Ψ	ĽĽ
simplif	y(-∫ ^e 3	$+2_{\frac{6}{2-3}}$	x ^{dx)}		
					6
solve	$-\int_{b}^{3} \frac{6}{2}$	$\frac{1}{\sqrt{x}}dx =$	6, b)	1-	
L	(D=	-е -	+2, D=	-e -+	·21
Ш					
Math1	Line	-	√■	π	÷
Math1 Math2	Line		√∎ ln	π i	▼ ⇔
Math1 Math2 Math3		e"	√∎ In	π i	⇒ ∞ lim
Math1 Math2 Math3 Trig			√■ In d⊡□	π i	⇒ ∞ lim
Math1 Math2 Math3 Trig Var	Line 0		√■ In 	π i ∫	⇒ ∞ lim ⊒
Math1 Math2 Math3 Trig Var	Line C I I Sin	e• d d cos	√■ In d□ (π i \int_{-}^{0} Σ	⇒ ∞ lim ⇒•
Math1 Math2 Math3 Trig Var abc	Line	e d d cos	√■ In d0 d0 1 1 1 1 1 1 1 1 1 1 1 1 1	π i ∫ θ	
Math1 Math2 Math3 Trig Var abc	Line		√■ ln d0 (π i ∫ θ ans	⇒ ∞ lim

Mark allocation: 2 marks

- 1 method mark for $b = \pm e^{-1} + 2$
- 1 mark for answer $b = e^{-1} + 2$ (the negative answer must be discarded)

Question 3c.i.

Worked solution

Shape of the region is a trapezium with vertical sides of length 6 and $\frac{6}{a-2}$, and a width of a-3.

Using the formula for the area of a trapezium gives $A = \frac{1}{2}(a+b)h = \frac{3(a-1)(a-3)}{(a-2)}$.

Mark allocation: 2 marks

- 1 method mark for recognising the trapezium and finding the lengths 6 and $\frac{6}{a-2}$
- 1 answer mark for correct answer

Question 3c.ii.

Worked solution

Set
$$\frac{3(a-1)(a-3)}{(a-2)} = 6.$$

Using CAS to solve for *a* gives $a = \pm \sqrt{2} + 3$.

Since a > 3, $a = \sqrt{2} + 3$.

🗢 Edit	Actio	n Inter	active		X
0.5 1 ♣2 (b)	► [dx Jdx	Simp	<u>fdx</u>	• ₩	v >
simplify solve(³	$\frac{1}{2}$	$3 + \frac{6}{a-2}$ $3 = \frac{3}{a-2}$ $3 = -\sqrt{3}$	(a-3) (a-1) (a-1) (a-1) (a-1) (a-1) (a-3	(a-1) (a-1) (a-2) (a-2) (a-2) (a-2) (a-2) (a-2)	3) 3)
٥		u- 7	2.0,0	(-72)	, 1
Math1	Line	-	√■	π	¢
Math2	0	e■	ln	i	00
Math3		d		$\int_{-\infty}^{0}$	lim
Trig	[0]		[88]	Σ□	
Var	sin	005	tan	θ	7
abc	.5111	-043	eun	•	•.
- T	+	÷	-la	ans	EXE
Alg	Standa	ard	Real	Rad	(11)

Mark allocation: 2 marks

- 1 method mark for setting $\frac{3(a-1)(a-3)}{(a-2)} = 6$
- 1 answer mark for $a = \sqrt{2} + 3$

• This question is worth two marks, so a working step must be shown. It is not sufficient to just give an answer.

Question 3c.iii.

Worked solution

The area bounded by the curve $y = \frac{6}{2-x}$, the *x*-axis and the lines x = 3 and x = a is less than the area of the trapezium, so

so

$$-\int_{3}^{a} \frac{6}{2-x} dx < \text{area of trapezium}$$

For $a = \sqrt{2} + 3$
$$\Rightarrow -\int_{3}^{\sqrt{2}+3} \frac{6}{2-x} dx < 6$$
Now $-\int_{3}^{e+2} \frac{6}{2-x} dx = 6$ from **part b.i.**,
$$\Rightarrow -\int_{3}^{\sqrt{2}+3} \frac{6}{2-x} dx < -\int_{3}^{e+2} \frac{6}{2-x} dx$$

$$\Rightarrow \sqrt{2} + 3 < e + 2$$

$$\Rightarrow \sqrt{2} + 1 < e$$

Mark allocation: 2 marks

- 1 method mark for using $-\int_{3}^{e+2} \frac{6}{2-x} dx = 6$ from **part b.i.**
- 1 answer mark for a clear and logical argument

• This question is a 'hence' question, so it relies on using arguments and results established in earlier parts of the question. It is not sufficient to simply calculate a decimal equivalent for $\sqrt{2}+1$ and show that $e > \sqrt{2}+1$.

Question 4a.

Worked solution

Using the product rule gives

$$f'(x) = 3x(x-4)^{2} + (x-4)^{3}$$
$$= (x-4)^{2}(3x+x-4)$$
$$= (x-4)^{2}(4x-4)$$
$$= 4(x-1)(x-4)^{2}$$

So a = 4.

Mark allocation: 2 marks

- 1 mark for evidence of product rule
- 1 mark for answer

Question 4b.

Worked solution

🙃 Edit Zoom Analysis 🋦 🛛 🗙
Sheet1 Sheet2 Sheet3 Sheet4 Sheet5
$ y_1 = 4 - 4 \cdot \cos\left(\frac{\pi \cdot x}{3}\right) 0 \le x \le 6 $
$\Box y2 = \frac{d}{dx} \left(4 - 4 \cdot \cos\left(\frac{\pi \cdot x}{3}\right) \right) \qquad = $
$\boxed{y3=\frac{4\cdot\pi}{3}}$
▼ y4= _{x*} (x-4) ³ +1
y4=x*(x-4)^3+1
Inflection
Rad Real 🚥

Stationary points: Let $f'(x) = 0 \implies 4(x-4)^2(x-1) = 0$

$$\Rightarrow x = 4, x = 1$$

At x = 1, y = -26 and at x = 4, y = 1.

So u = 1 and v = 1.

Mark allocation: 2 marks

- 1 mark for correct value for *u*
- 1 mark for correct value for *v*

Question 4c.

Worked solution

Looking at the graph of f(x) gives the region of the graph from the *x*-intercept at x = 0.016 to the minimum turning point at x = 1. So the region is [0.016, 1].

Mark allocation: 2 marks

- 1 mark for correct *x*-intercept
- 1 mark for correct range

Question 4d.

Worked solution

Looking at the screen, the graph must be moved to the right at least 0.015 units, so k > 0.015.

Mark allocation: 1 mark

• 1 mark for answer k > 0.015

Sometimes questions are completed more easily using a graph.

Question 4e.

Worked solution

The graph of y = f(x) - 1 has x-intercepts at x = 0 and x = 4, so the area can be calculated as

Area =
$$\begin{vmatrix} 4 \\ 5 \\ 0 \end{vmatrix} x^4 - 12x^3 + 48x^2 - 64x \ dx \end{vmatrix}$$

= $\left| \left[\frac{x^5}{5} - \frac{12x^4}{4} + \frac{48x^3}{3} - \frac{64x^2}{2} \right]_0^4 \right|$
= $|-51.2 - 0|$
= 51.2 square units

Mark allocation: 3 marks

- 1 mark for setting up the integral with correct intercepts
- 1 mark for correct antiderivative
- 1 mark for answer

• Be careful here as the area cannot be negative – it is best to use absolute value signs around the calculation.

Question 4f.i.

Worked solution

Dilation of factor of $\frac{1}{2}$ in x-direction (or from the y-axis)

Translation of 1 unit down

Mark allocation: 2 marks

- 1 mark for dilation specified correctly
- 1 mark for translation specified correctly

Question 4f.ii.

Worked solution

(0,0) and (2,0) by looking at the x-intercepts of y = f(x) - 1 and halving

Mark allocation: 1 mark

• 1 mark for both coordinates correct

• Note that the question is a 'hence' question, so it needs to be obvious that the answer has come from working with the previous answer.

Question 4f.iii.

Worked solution

Area = $\frac{1}{2}$ × previous area = $\frac{1}{2}$ × 51.2 = 25.6 square units

Mark allocation: 1 mark

• 1 mark for answer (showing appropriate working)

Note: Must have evidence of halving previous answer. If area is calculated using an integral, then zero marks allocated.

Question 5a.i.

Worked solution

The sum of the edges is equal to *E* cm; therefore, 6x + 3y = E, so $y = \frac{E}{3} - 2x$.

Using Pythagoras, or otherwise, it can be shown that the vertical height of the triangle is

$$\sqrt{x^2 - \left(\frac{x}{2}\right)^2} = \sqrt{\frac{3x^2}{4}} = \frac{\sqrt{3x}}{2}$$

The area of the triangle end is $\frac{1}{2}bh = \frac{1}{2}x\frac{\sqrt{3}x}{2} = \frac{\sqrt{3}x^2}{4}$.

The volume of the prism is

$$A_{\text{triangle}} \times y = \frac{\sqrt{3} x^2}{4} \left(\frac{E}{3} - 2x\right) = \frac{\sqrt{3} E x^2}{12} - \frac{\sqrt{3} x^3}{2}$$
, as required.

Mark allocation: 3 marks

- 1 method mark for finding $y = \frac{E}{3} 2x$
- 1 method mark for finding the vertical height of the triangle
- 1 answer mark for finding area of triangle, leading to volume of prism

Question 5a.ii.

Worked solution

Maximum volume occurs when $\frac{dV}{dx} = 0$.

Using CAS gives
$$\frac{dV}{dx} = \frac{-(9\sqrt{3}x^2 - \sqrt{3}Ex)}{6}$$

Set
$$\frac{-(9\sqrt{3}x^2 - \sqrt{3}Ex)}{6} = 0$$

Using CAS gives

Alg	Standa	ard	Real	Rad	(11)	Alg	Standa	ard	Real	Rad	(11)
A V	ŧ	E	ł	ans	EXE	A 7	+	Ē	ł	ans	EXE
abc	sin	COS	tan	θ	t	abc	sin	COS	tan	θ	t
Var		[8]	[66]	20		Var		[8]	[66]	20	
Trig	CHICK 1			1-		Trig		d		1-	
Math3		<u>d</u>		10	lim	Math3		<u>d</u>	do	19	lim
Math2	0	e	ln	i	00	Math2	0	e	ln	i	90
Math1	Line	-	$\sqrt{\blacksquare}$	π	¢	Math1	Line	-	√■	π	¢
					T	p	J•V 3 •>	(v 3	•н•х= {х=	0, x) 0, x=	<u>E</u> } 9} ▼
_	=	(9•√3	<u>-</u> 6	<u>√3</u> •E•	<u>x)</u>	. (=	2 / 0	6	<u>v з • Е •</u>	<u>x)</u>
$\frac{\mathrm{d}}{\mathrm{dx}} \left(\frac{\sqrt{3} \cdot \mathbf{E} \cdot \mathbf{x}^2}{12} - \frac{\sqrt{3} \cdot \mathbf{x}^3}{2} \right) \qquad $				$\frac{\mathrm{d}}{\mathrm{dx}} \left(\frac{\sqrt{3}}{\sqrt{3}} \right)$	3•E•x ² 12	$\frac{\sqrt{3}}{2}$	$\left[\frac{x^3}{2}\right]$	(a b	,		
0.5 1 ➡2	► fdx fdx	Simp	<u>fdx</u>	₩	▼ ►	0.5 1 ♣2 ↔	► [fdx- ∫dx+	Simp	ſdx /	₩	▼ >
🗘 Edit	: Actio	n Inter	active	_	×	🗢 Edit	t Actio	n Inter	active		×

So the maximum volume occurs $x = \frac{E}{9}$ cm.

Mark allocation: 2 marks

• 1 mark for setting
$$\frac{dV}{dx} = \frac{-(9\sqrt{3}x^2 - \sqrt{3}Ex)}{6}$$
 equal to zero
• 1 mark for answer $x = \frac{E}{6}$

9

• 1 mark for answer
$$x =$$

Tip

• For questions worth more than 1 mark, appropriate working must be shown.

Worked solution

Surface area of the prism is

$$2 \times \text{Area}_{\text{triangle}} + 3 \times \text{Area}_{\text{rectangle}}$$
$$= \frac{\sqrt{3}x^2}{2} + 3xy$$
$$= \frac{\sqrt{3}x^2}{2} + 3x\left(\frac{E}{3} - 2x\right)$$
$$= \frac{\sqrt{3}x^2}{2} + Ex - 6x^2$$

Using CAS gives

🗢 Edit Action Interactive 🛛 🖂									
0.5 1 1+2	}►	Simp	<u>fdx</u>	• ₩	V P				
$\frac{d}{dx} \left(\frac{\sqrt{3} \cdot x^2}{2} + E \ast x - 6x^2 \right)$									
√3•x−12•x+E									
solve (√3•x-2	12•x+)	E=0, x)					
			[_{x=-}	E	_1				
			l^	√3+1	2 ∫				
					-				
	1								
Math1	Line	-	$\sqrt{\blacksquare}$	π	÷				
Madeo									
Mathz	0	e	ln	i					
Math2 Math3			ln do	i /°	oo lim				
Math2 Math3 Trig				i /	oo lim ∎→□				
Math2 Math3 Trig Var		e"		<i>i</i> ∫	∞ lim →□				
Math2 Math3 Trig Var abc		e" d d cos	ln d⊡ [∎⊞] tan	<i>i</i> <i>f</i> _□ Σ □ θ					
Math2 Math3 Trig Var abc		e d d cos	ln d⁰ (₿₿) tan	i ∫ 2 θ ans	↔ lim →□ t EXE				

So, the maximum surface area occurs when $x = \frac{E}{12 - \sqrt{3}}$ cm.

Mark allocation: 2 marks

- 1 method mark for finding prism's surface area
- 1 answer mark for $x = \frac{E}{12 \sqrt{3}}$

END OF WORKED SOLUTIONS