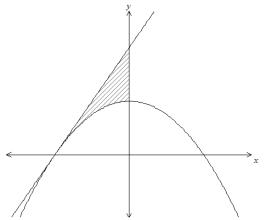
MATHEMATICAL METHODS UNIT 4

SAC 2 ANALYSIS TASK Tech Free

STUDENT NAME = _____

Time Allowed: 75 Minutes

Total Marks = 38

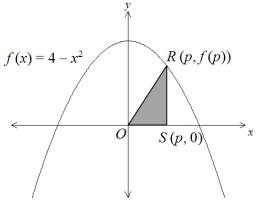

General instruction regarding the assessment of questions worth more than 1 mark:-

- Show all working clearly.
- Justify your answers when required.

All answers need to be given in exact form.

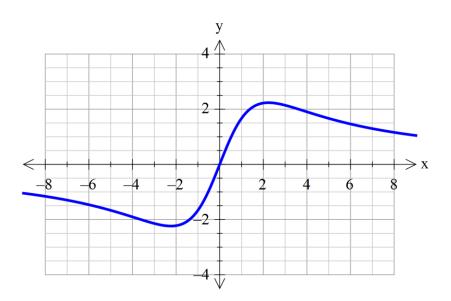
Technology Free with a Bound Book.

The graph of $f: R \rightarrow R$, $f(x) = 4 - x^2$ and the tangent to the graph of f, where it crosses the negative *x*-axis, are shown.



a) Find the equation of the tangent to the graph of f where it crosses the negative *x*-axis.

2 marks


b) Find the area of the shaded region.

c) Consider the triangle *ORS*, where vertex *R* is on the graph of *f*, with coordinates (p, f(p)), and vertices *O* and *S* are on the *x*-axis, with coordinates (0,0) and (p,0), respectively.

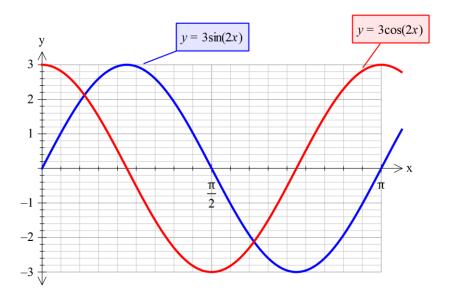
If $p \in [-2, 2]$, find the value(s) of *p* for which the area of triangle *ORS* is a maximum.

The graph of $h(x) = \frac{10x}{5+x^2}$ is shown.

a) Find h'(x).

2 marks

b) Find the exact coordinates of the minimum and maximum turning points.


c) Find the derivative of $\log_e(5+x^2)$ and hence find an antiderivative for $\frac{10x}{5+x^2}$.

3 marks

d) Find the area enclosed between the curve, the *x*-axis, the line where the *x* equals the *x*-coordinate of the maximum turning point, and the line x = 6.

e) Find the average value of the function h(x) over the interval [0,6].

The graphs of $f(x) = 3\sin(2x)$ and $g(x) = 3\cos(2x)$ are shown for $x \in [0, \pi]$.

a) Find the coordinates of the points of intersection of *f* and *g* for the interval $\left[0, \frac{\pi}{2}\right]$.

b) Determine the area enclosed between the two curves on the interval $\left[0, \frac{\pi}{2}\right]$.

Consider the function $f(x) = e^x$ and the point on the graph of f(x) with the coordinates (a, e^a) , a > 0.

a) Sketch the graph of f and mark the point (a, e^a) .

1 mark

b) Draw the tangent to the graph at the point (a, e^a) .

1 mark

c) Find the equation of the tangent above, in terms of *a*.

d) Write down the definite integral which determines the area of the region bound by the graph of *f*, the tangent at (a, e^a) and the coordinate axes.

2 marks

e) Find the value of *a* if the area described above is equal to $e^{a} - 1$.

4 marks

END OF SAC

Additional Working Space.

Additional Working Space.