The Mathematical Association of Victoria

Trial Examination 2017 MATHEMATICAL METHODS

Trial Written Examination 2 - SOLUTIONS

SECTION A: Multiple Choice

Question	Answer	Question	Answer
1	С	11	В
2	В	12	D
3	D	13	С
4	Е	14	D
5	С	15	Е
6	В	16	С
7	Е	17	А
8	D	18	А
9	Е	19	Е
10	С	20	В

Question 1

$$f:\left[0,\frac{\pi}{2}\right] \rightarrow R, f(x) = -3\cos\left(4x + \pi\right) + 1$$

Amplitude = 3 translated vertically by 1 unit giving range = $\begin{bmatrix} -2, 4 \end{bmatrix}$

period = $\frac{2\pi}{4} = \frac{\pi}{2}$

Question 2

Answer B

In 3rd quadrant $\sin(x) = -\frac{3}{\sqrt{34}}$

Question 3 $h(x) = x^{4}$ h(x + y) = h(x) + h(y) is falseLHS = $(x + y)^{4}$ $= x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$

$$\mathbf{RHS} = x^4 + y^4$$

LHS
$$\neq$$
 RHS

	ons 🕁 🛛 🛱 🔀
Define $h(x)=x^4$	Done 🗅
h(x+y)=h(x)+h(y)	$(x+y)^4 = x^4 + y^4$
h(x)=h(-x)	true
-h(x)=-h(-x)	true
$h(x \cdot y) = h(x) \cdot h(y)$	true
$h\left(\frac{x}{y}\right) = \frac{h(x)}{h(y)}$	true

Question 4

Answer E

$$h: (-\infty, 4) \to R, h(x) = 2(4-x)^{2} - 1$$

$$y = 2(4-x)^{2} - 1$$

Swap x and y for inverse

$$x = 2(4-y)^{2} - 1$$

$$4-y = \pm \sqrt{\frac{x+1}{2}}$$

$$y = 4 \pm \sqrt{\frac{x+1}{2}}$$

solve(x=2·(4-y)^{2}-1, y)

$$\left\{y=4-\frac{\sqrt{2·(1+x)}}{2}, y=4+\frac{\sqrt{2·(1+x)}}{2}\right\}$$

Domain of $h^{-1} = \text{range } h = (-1, \infty)$ $h^{-1}: (-1, \infty) \to R, h^{-1}(x) = 4 - \frac{\sqrt{2x+2}}{2}$

Answer C

 $f(x) = 3e^{2x}$ and $g(x) = \log_e (x+2)$ For f(g(x)), test that the range $g \subseteq$ domain fGiving $R \subseteq R$ So f(g(x)) exists with dom $f(g(x)) = \text{dom } g(x) = (-2,\infty)$

h = f(g(x)) can be defined as $h: (-2, \infty) \rightarrow R, h(x) = 3(x+2)^2$

Question 6

Answer B

mx + y = 22x - 3y = kUsing ratios

For infinite solutions or no solution

$$\frac{m}{2} = -\frac{1}{3}, m = -\frac{2}{3}$$

For no solution

$$-3 \neq \frac{k}{2}, k \neq -6$$
$$m = -\frac{2}{3}, k \in \mathbb{R} \setminus \{-6\}$$

Question 7

Answer E

Range = 42 - 37 = 5Amplitude = 2.5 Vertical translation = 39.5 Period = $\frac{2\pi}{n} = 24$, giving $n = \frac{\pi}{12}$

$$y = 2.5 \sin\left(\frac{\pi t}{12}\right) + 39.5$$

Answer D

$$f(x) = \sqrt{2x-1} + 3$$
 and $g(x) = \frac{1}{(x-2)^2} + 4$

Domain of f is $\left\lfloor \frac{1}{2}, \infty \right\rfloor$

Domain of g is $R \setminus \{2\}$

The intersection of both is

$$\left[\frac{1}{2},2\right)\cup\left(2,\infty\right)$$

which is the domain of f + g

Question 9

Answer E

$$f'(x) = e^{x+1} + x + 1$$

$$f(x) = e^{x+1} + \frac{x^2}{2} + x + c$$

$$f(0) = 2 \text{ giving } 2 = e^{0+1} + \frac{0^2}{2} + 0 + c \therefore c = 2 - e$$

then

$$f(x) = e^{x+1} + \frac{x^2}{2} + x + 2 - e$$

$$= \frac{x^2}{2} + x + 2 + e(e^x - 1)$$

Question 10

Answer C

Given
$$\int_{1}^{3} g(x)dx = 2$$

 $2\int_{3}^{1} (g(x)+1)dx = 2\int_{3}^{1} g(x)dx + 2\int_{3}^{1} 1dx$
 $= -2\int_{1}^{3} g(x)dx - 2\int_{1}^{3} 1dx$
 $= -2 \times 2 - 2[x]_{1}^{3}$
 $= -4 - 4$
 $= -8$

Answer B

Average value
$$=\frac{1}{b-a}\int_{a}^{b}f(x)dx = \frac{1}{\pi-0}\int_{0}^{\pi}f(x)dx$$

where $f(x) = -\sin(\pi - 2x) + 3$

Average value = 3

Question 12

Answer D

 $f(x) = e^x$ and $g(x) = \log_e(x) + 7$

 $f^{-1}(x) = \log_e(x)$ and $g^{-1}(x) = e^{x-7}$

Let $k(x) = f^{-1}(x) - g^{-1}(x)$

Maximum value is approximately 1.49.

1.7 1.8	1.9 🕨	*MAV Solutions 🗢	RAD 🚺 🗙
solve(f2(y)=x,y)	$y = \ln(x)$	and $x > 0$
solve(f3(y)=x,y)		$y = e^{x-7}$

Answer C

 $f(x) = \log_e \left(3 - x\right)$

Intercepts

 $(0, \log_e(3)), (2, 0)$

Gradient = $-\frac{\log_e(3)}{2}$

Gradient of the perpendicular line = $\frac{2}{\log_e(3)}$

 $g(x) = x^2$

$$g'(x) = 2x = \frac{2}{\log_{e}(3)}, x = \frac{1}{\log_{e}(3)}$$

$$\left(\frac{1}{\log_{e}(3)}, \frac{1}{(\log_{e}(3))^{2}}\right)$$

$$y - \frac{1}{(\log_{e}(3))^{2}} = \frac{2}{\log_{e}(3)} \left(x - \frac{1}{\log_{e}(3)}\right)$$

$$y = \frac{2}{\log_{e}(3)} x - \frac{1}{(\log_{e}(3))^{2}}$$

$$\boxed{1.5 \ 1.6 \ 1.7} \quad \text{*MAV Solutions} \quad \text{RAD}$$

				-10	
tangentL	$\operatorname{ine}\left(x^{2}, x^{2}\right)$	$\left(\frac{1}{\ln(3)}\right)$	$\frac{2 \cdot x}{\ln(3)}$	$\frac{1}{(\ln(3))^2}$	
					- 1

Question 15 Answer E

 $\frac{\left(\text{left-endpoint rectangles of width } 0.25 + \text{right-endpoint rectangles of width } 0.25\right)}{2}$

The smaller the width of the rectangle the better the estimate. In this case the right-endpoint rectangles estimate will give an over estimate and the left-endpoint rectangles will give an underestimate. The average of the two should give the best estimate.

$$\frac{0.25(f(0) + 2f(0.25) + 2f(0.5) + 2f(0.75) + f(1))}{2}$$

 ≈ 0.6411

Question 16

Answer C

0.1+b+0.2+0.3=1, b=0.4Var $(X) = E(X^{2}) - (E(X))^{2}$ $4 = 0.4+0.2a^{2}+2.7-(0.4+0.2a+0.9)^{2}$ $a = \frac{13 \pm \sqrt{1205}}{8}$

Question 17 Answer A

Let W represent a white chocolate and

A represent Box A.

Question 19

Answer E

Let W represent winning.

Pr(W) = 0.65

 $W \sim \operatorname{Bi}(n, 0.65)$

 $\Pr(W \ge 2) > 0.95$

 $1 - (\Pr(W = 0) + \Pr(W = 1)) > 0.95$

 $\Pr(W = 0) + \Pr(W = 1) < 0.05$

 $0.35^n + 0.65n(0.35)^{n-1} < 0.05$

Answer B

$$X \sim N(\mu, 40^2)$$

 $\Pr(X > 300) = 0.2$

Solve
$$\frac{300 - \mu}{40} = 0.8416...$$
 for μ

 $\mu = 266$ to the nearest integer

I.2 1.3 1.4 MAV Solutions → RAD (× MAV Solu

SECTION B

Question 1 $f:\left[-\pi,\frac{7\pi}{2}\right] \rightarrow R, f(x) = -a\sin\left(\frac{x}{3} + \frac{\pi}{3}\right) - \pi$ a. period = $\frac{2\pi}{\frac{1}{3}} = 6\pi$ 1A b. range of f is $\left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right]$ So $\frac{-\frac{3\pi}{2} + \frac{\pi}{2}}{2} = -\frac{\pi}{2}$

As there is already a negative sign in front of a, $a = \frac{\pi}{2}$ **1M show that**

c. shape 1A
intercepts
$$\left(0, -\pi - \frac{\sqrt{3}\pi}{4}\right)$$
, endpoints $\left(-\pi, -\pi\right)$ and $\left(\frac{7\pi}{2}, -\frac{\pi}{2}\right)$ 1A

d. domain of *f* is restricted to $[-\pi, b]$ First stationary point after $x = -\pi$ is $\left(\frac{\pi}{2}, -\frac{3\pi}{2}\right)$

Maximum possible $b = \frac{\pi}{2}$ 1A

e. For
$$b = \frac{\pi}{2}$$
, the domain of f_1^{-1} is $\left[-\frac{3\pi}{2}, -\pi\right]$. **1A**

f. The equation of tangent to f at
$$x = 0$$
 is $y = -\frac{\pi x}{12} - \frac{\sqrt{3}\pi}{4} - \pi$.
The equation of tangent to f at $x = \pi$ is $y = \frac{\pi x}{12} - \frac{\sqrt{3}\pi}{4} - \pi - \frac{\pi^2}{12}$.
1A

define
$$f(x) = -\frac{\pi}{2} \sin\left(\frac{x}{3} + \frac{\pi}{3}\right) - \pi |-\pi \le x \le \frac{7\pi}{2}$$

done
tanLine $(f(x), x, 0)$
 $\frac{-\sqrt{3} \cdot \pi}{4} - \pi - \frac{x \cdot \pi}{12}$
tanLine $(f(x), x, \pi)$
 $\frac{-\sqrt{3} \cdot \pi}{4} - \pi + \frac{x \cdot \pi}{12} - \frac{\pi^2}{12}$

g. point of intersection of the tangents =
$$\left(\frac{\pi}{2}, -\frac{\sqrt{3}\pi}{4} - \pi - \frac{\pi^2}{24}\right)$$
 1A
solve $\left(\frac{-\sqrt{3} \cdot \pi}{4} - \pi - \frac{\mathbf{x} \cdot \pi}{12} = \frac{-\sqrt{3} \cdot \pi}{4} - \pi + \frac{\mathbf{x} \cdot \pi}{12} - \frac{\pi^2}{12}, \mathbf{x}\right)$
 $\left\{\mathbf{x} = \frac{\pi}{2}\right\}$

© The Mathematical Association of Victoria, 2017

h. Sketch the graph to view the required area.

Area =

$$\int_{0}^{\frac{\pi}{2}} \left(-\frac{\pi}{2} \sin\left(\frac{x}{3} + \frac{\pi}{3}\right) - \pi \right) - \left(-\frac{\pi x}{12} - \frac{\sqrt{3}\pi}{4} - \pi \right) dx + \int_{\frac{\pi}{2}}^{\pi} \left(-\frac{\pi}{2} \sin\left(\frac{x}{3} + \frac{\pi}{3}\right) - \pi \right) - \left(\frac{\pi x}{12} - \frac{\sqrt{3}\pi}{4} - \pi - \frac{\pi^{2}}{12} \right) dx$$

OR

Alternatively define the functions as $f(x) = -\frac{\pi}{2} \sin\left(\frac{x}{3} + \frac{\pi}{3}\right) - \pi$ And $g(x) = -\frac{\pi x}{12} - \frac{\sqrt{3}\pi}{4} - \pi$ and $h(x) = \frac{\pi x}{12} - \frac{\sqrt{3}\pi}{4} - \pi - \frac{\pi^2}{12}$.

And
$$g(x) = -\frac{\pi x}{12} - \frac{\sqrt{3\pi}}{4} - \pi$$
 and $h(x) = \frac{\pi x}{12} - \frac{\sqrt{3\pi}}{4} - \pi - \frac{\pi}{12}$
Gives Area $= \int_{0}^{\frac{\pi}{2}} (f(x) - g(x)) dx + \int_{\frac{\pi}{2}}^{\pi} (f(x) - h(x)) dx$
OR

By symmetry Area = $2\int_{0}^{\frac{\pi}{2}} (f(x) - g(x)) dx$

- correct terminals 1A
- correct functions 1A

i. Area enclosed between f and the tangents, correct to 2 decimal = 0.21 square units 1A

j. Transformations to get from f to f_1 where

 $f(x) = -\frac{\pi}{2}\sin\left(\frac{x}{3} + \frac{\pi}{3}\right) - \pi = -\frac{\pi}{2}\sin\left(\frac{1}{3}(x+\pi)\right) - \pi$ There are many solutions. Three possibilities have been given. Translate π units up and π units to the right: $y_1 = -\frac{\pi}{2}\sin\left(\frac{x}{3}\right)$ 1A Dilate by a factor of $\frac{2}{\pi}$ from the x-axis: $y_2 = -\sin\left(\frac{x}{3}\right)$ Reflect in the x-axis: $y_2 = \sin\left(\frac{x}{3}\right)$ 1A Dilate by a factor of $\frac{1}{3}$ from the y-axis: $f_2(x) = \sin(x)$ 1A OR Dilate by a factor of $\frac{2}{\pi}$ from x-axis: $y_1 = \frac{2}{\pi} \left[-\frac{\pi}{2}\sin\left(\frac{x}{3} + \frac{\pi}{3}\right) - \pi \right] = -\sin\left(\frac{x}{3} + \frac{\pi}{3}\right) - 2$ 1A Dilate by a factor of $\frac{1}{3}$ from y-axis: $y_2 = -\sin\left(\frac{3x}{3} + \frac{\pi}{3}\right) - 2 = -\sin\left(x + \frac{\pi}{3}\right) - 2$ Reflect in the x-axis: $y_3 = \sin\left(x + \frac{\pi}{3}\right) + 2$ 1A

Translate $\frac{\pi}{3}$ units right and 2 units down: $f_2(x) = \sin\left(\left(x - \frac{\pi}{3}\right) + \frac{\pi}{3}\right) + 2 - 2 = \sin(x)$ **1A** OR Translate up by π units: $y_1 = -\frac{\pi}{2} \sin\left(\frac{x}{3} + \frac{\pi}{3}\right)$ Reflect over x-axis: $y_2 = \frac{\pi}{2} \sin\left(\frac{x}{3} + \frac{\pi}{3}\right)$ 1A Dilate by a factor of $\frac{2}{\pi}$ from the x-axis: $y_3 = \sin\left(\frac{x}{3} + \frac{\pi}{3}\right) = \sin\left(\frac{1}{3}(x+\pi)\right)$ 1A Translate to the right by π units: $y_4 = \sin\left(\frac{x}{3}\right)$ Dilate by a factor $\frac{1}{3}$ from the y-axis: $f_2(x) = \sin(x)$ 1A

Question 2

Square based pyramid with vertical height, h metres, and length of the sides of the base, x metres.

$$TSA = 60 \text{ m}^2$$
.

a. Sketch the right-angled triangle required.

This gives the Pythagoras formula $y^2 = \left(\frac{x}{2}\right)^2 + h^2$

Rearrange to get

$$y^{2} = \frac{x^{2}}{4} + h^{2}$$
$$y = \pm \sqrt{\frac{x^{2}}{4} + h^{2}}$$

For y > 0, $y = \sqrt{h^2 + \frac{x^2}{4}}$ as required. **1M show that**

b. TSA = square base + 4 slanting faces.

$$TSA = x^{2} + 4 \times \frac{1}{2}xy$$

$$Using \quad y = \sqrt{h^{2} + \frac{x^{2}}{4}}$$

$$TSA = x^{2} + 2x\sqrt{h^{2} + \frac{x^{2}}{4}}$$

$$1A$$

c. To find the relationship between *x* and *h* we know that $TSA = 60 \text{ m}^2$. Letting $x^2 + 2x\sqrt{h^2 + \frac{x^2}{4}} = 60$ and solve for *h*

For
$$h > 0$$
, $h = \frac{\sqrt{900 - 30x^2}}{x}$
Volume $= \frac{1}{3} \times \text{ area of base } \times \text{ height.}$
Volume $= \frac{1}{3}x^2 \times \frac{\sqrt{900 - 30x^2}}{x}$
Giving $V = \frac{1}{3}x\sqrt{900 - 30x^2}$ as required **1M show that**
 $| \text{solve}\left(x^2 + 2 \cdot x \cdot \sqrt{h^2 + \frac{x^2}{4}} = 60, h\right)$
 $| \left| h = -\sqrt{\frac{900 - 30 \cdot x^2}{x^2}}, h = \sqrt{\frac{900 - 30 \cdot x^2}{x^2}} \right|$

d. We need $900 - 30x^2 > 0$ giving implied domain $x \in (0, \sqrt{30})$

1A

e. Solve
$$\frac{dV}{dx} = 0$$

Considering the graph of V, for the given domain we have a local maximum.

1A 1A

The maximum volume,
$$V = 5\sqrt{30}$$
 m³,
at $x = \sqrt{15}$ m.
define $v(x) = \frac{1}{3}x\sqrt{900-30x^2}$
done
solve $\left(\frac{d}{dx}(v(x))=0, x\right)$
 $\{x=-\sqrt{15}, x=\sqrt{15}\}$
 $v(\sqrt{15})$
 $5\cdot\sqrt{30}$

f.i. $TSA = 4 \times area of equilateral triangle.$

$$TSA = 4 \times \frac{1}{2}d^2\sin(60^\circ) \qquad 1M$$

=
$$2d^2 \times \frac{\sqrt{3}}{2} = \sqrt{3}d^2$$
 in the required form. 1A

ii. TSA = 60 m², so
$$\sqrt{3}d^2 = 60$$

© The Mathematical Association of Victoria, 2017

giving, for
$$d > 0$$
, $d = \sqrt{\frac{60}{\sqrt{3}}} = \sqrt{20\sqrt{3}}$ 1M

$$Vol = V_T = \frac{d^3}{6\sqrt{2}}$$
giving $V_T = \frac{\left(\sqrt{\frac{60}{\sqrt{3}}}\right)^3}{6\sqrt{2}} = 24.028 \text{ m}^3 \text{ correct to 3 decimal places.}$ 1A
g. TSA = $\frac{\pi r (r+s)}{6\pi r} = 60 \text{ m}^2$
Giving $s = \frac{60 - \pi r^2}{\pi r}$

Volume of cone $=\frac{1}{3}\pi r^2 l$ where *l* is height of cone.

To find *l*, for l > 0, use

$$l^2 + r^2 = s^2$$
$$l = \sqrt{s^2 - r^2}$$

Volume of cone = $\frac{1}{3}\pi r^2 \sqrt{s^2 - r^2}$ where $s = \frac{60 - \pi r^2}{\pi r}$

Therefore
$$V(r) = \frac{2}{3}\pi r^2 \sqrt{\frac{900}{\pi^2 r^2} - \frac{30}{\pi}}$$
 1M

For maximum volume, V'(r) = 0

Considering the graph of *V*, for the given domain we have a local maximum. Maximum volume, correct to two decimal places = 30.90 m^3 **1A**

combine (solve (π ·r·(r+s)=60, s))

 $\left\{s=\frac{60-r^2\cdot\pi}{r\cdot\pi}\right\}$

1A

h. cone

Question 3

a. (0.811,0.893)

1A

b. $0.99 \times 200 = 198$

c. Yes, 0.92 is outside the 99% confidence interval.

A suitable comment.

d. Margin of error
$$= 0.92 - 0.852 = 2.57...\sqrt{\frac{0.852 \times 0.148}{n}}$$
 1M

1A

n = 181 to the nearest integer **1A**

e.
$$X \sim \text{Bi}(5, 0.852)$$
 1M

 $\Pr(X > 3) = \Pr(X \ge 4)$

= 0.839 correct to 3 decimal places **1A**

▲ 1.14
 1.15
 1.16
 *MAV Solutions → DEG (1)
 DEG (

f.
$$\Pr(\text{first } 3 | \text{only } 3) = \frac{\Pr(\text{first } 3 \cap \text{only } 3)}{\Pr(X = 3)}$$
 1M

$$\frac{(0.852)^3 \times (0.148)^2}{\Pr(X=3)} = 0.1$$
 1A

OR

There are $\binom{5}{2} = 10$ ways for 3 globes only to last longer than 100 hours

and each way has the same probability .1MOnly in one of these ways will it be the first three. Answer 0.11A

1.17 1.18 1.19 ▶ *MAV Sol	utions 🕁 🛛 DEG 🚺 🗙
(0.852) ³ ·(0.148) ²	0.01354697
binomPdf(5,0.852,3)	0.13546971
0.013546971436032	0.1
0.13546971436032	

g. $Y \sim N(\mu, \sigma^2)$

$$\frac{150 - \mu}{\sigma} = 2.0537...$$

$$\frac{100 - \mu}{\sigma} = -1.045...$$
1M
$$\mu = 116.86$$
1A
$$\sigma = 16.14$$
1A

h. Let J represent Jessica doing her homework and

D represent David doing his homework.

$$\Pr(J \cap D) = \Pr(J) \times \Pr(D) = 0.2q^{2} \text{ for independent events}$$

$$\Pr(J' \cap D') = 1 - \Pr(J) - \Pr(D) + \Pr(J \cap D)$$

1A

$$\Pr(J' \cap D') = 1 - 0.2 - q^2 + 0.2q^2 = 0.8 - 0.8q^2$$

OR

For independent events $\Pr(J' \cap D') = \Pr(J') \times \Pr(D')$ 1A

$$\Pr(J' \cap D') = 0.8(1-q^2)$$
 1A

i. Solve $q^2 = 0.6$ for q, q > 0

$$q = \frac{\sqrt{15}}{5}$$
IA

$$\frac{117 1 \cdot 18 \cdot 19 \cdot 14AV \text{ Solutions}}{exact(\text{solve}(q^2 = 0.6, q))} = \frac{\sqrt{15}}{g = \frac{\sqrt{15}}{5}}$$
Question 4
a. Shape IA
Asymptote IA
Points IA

$$\frac{y}{10} = \frac{y}{10} = \frac$$

= 0

Δ

1

© The Mathematical Association of Victoria, 2017

Declined by 235 rabbits

1A

c.
$$g(t) = \int (g'(t))dt + c$$

 $= e^{(1-t)^3} + c$
 $g(1) = 2$

 $e^{(1-1)^3} + c = 2, c = 1$

 $g(t) = e^{(1-t)^3} + 1$

1A

d. g(0) = 3.718...

372 rabbits

1A

e. Asymptote y = 1

100 rabbits	1A
f. Shape	1A
Points and asymptote	1A

1A

= 12 m

12.

2.2-

END OF SOLUTIONS

23