MATHEMATICAL METHODS

Written Examination 2

2017 Trial Examination

SOLUTIONS

2017 MATHEMATICAL METHODS EXAM 2

SECTION 1

Question 1

Answer: C

Explanation:

Sketch on CAS over the restricted domain

Question 2

Answer: B

Explanation:

Sketch on CAS or solve $\left(\frac{dy}{dx}=0\right)$

Question 3

Answer: E

Explanation:

solve on CAS over restricted domain

Question 4

Answer: A

Explanation:

Period = $\frac{2\pi}{2/\pi}$, *range*: [-3 - 1, -3 + 1]

Question 5

Answer: C

Explanation:

$$\frac{f(5)-f(0)}{5}$$
 on CAS

2017 MATHEMATICAL METHODS EXAM 2

Question 6

Answer: B

Explanation:

Find inverse rule on CAS. Domain of $g^{-1} = Range \ of \ g = [3, \infty)$

Question 7

Answer: E

Explanation:

 $1 - \Pr(same) = 1 - (0.2^2 + 0.25^2 + 0.45^2 + 0.1^2)$

Question 8

Answer: D

Explanation:

Period = $16 \rightarrow n = \frac{\pi}{8}$, *amp* = 3

Question 9

Answer: B

Explanation:

$$\frac{1}{2}\frac{d}{dx}\left(x^{2}\log_{e}(kx)\right) - \frac{x}{2} = x\log_{e}(kx)$$
$$\frac{x^{2}}{2}\log_{e}(kx) - \int \frac{x}{2} dx + c = \int x\log_{e}(kx) dx$$

Question 10

Answer: A

Explanation:

tangentline $(cx^2 - 5, x, -1)$ on CAS and then sub in (-4, -1)

2017 MATHEMATICAL METHODS EXAM 2

Question 11

Answer: B

Explanation:

$$x' = \frac{1}{2}x, \ y' = -y \to -y = e^{2\left(\frac{1}{2}x\right)} - 4$$

Question 12

Answer: A

Explanation:

$$Area = \int_{-b}^{b} (y1 - y2) dx$$
$$= \int_{-b}^{b} (a - f(x)) dx$$

Question 13

Answer: B

Explanation:

Sketch on CAS

Note that option A is incorrect because x = 7 is outside the domain of the function.

Question 14

Answer: D

Explanation:

Pr(X > 23.3) = Pr(Z > -2) = Pr(Z < 2)

Question 15

Answer: E

Explanation:

$$\int_0^1 f(x)dx = 1 \to k = \frac{15}{14}$$
, solve $\int_a^1 f(x)dx = \frac{256 - 11\sqrt{2}}{256}$ for a

Question 16

Answer: C Explanation: x' = 2x and y' = -3y + 1 $\rightarrow x = \frac{x'}{2}$ and $y = \frac{y'-1}{-3}$ Substituting into $f(x) = \cos(2x)$ gives $g(x) = 1 - 3\cos(x)$

Question 17

Answer: D

Explanation:

$$\Pr\left(\hat{P} \ge \frac{5}{32}\right) = \Pr(X \ge 5) = binomcdf(32, 0.2, 5, 32)$$

Question 18

Answer: A

Explanation:

Check for solution that satisfies both equations- 0.15 + a = 0.58 and a + b = 0.55

Question 19

Answer: B

Explanation:

$$(x-2)(3-x) = \frac{k}{2} - x, \ \Delta > 0$$

Question 20

Answer: D

Explanation:

$$\frac{d}{du} \left(\sqrt{u^2 + (u^2 + 1 - 2)^2} \right) = 0 \rightarrow u = 0, \pm 0.5\sqrt{2}$$

When u = 0 the distance is 1, when u = $0.5\sqrt{2}$ the distance is $\frac{\sqrt{3}}{2}$ that is <1.

Minimal distance occurs when $x = 0.5\sqrt{2}$, distance $=\frac{\sqrt{3}}{2}$

SECTION 2

Question 1

a.
$$Period = \frac{2\pi}{\frac{\pi}{24}} = 48$$
, 1 mark
Range: $[-1, 11]$

b.
$$f'(x) = -\frac{\pi}{4} \sin\left(\frac{\pi}{24}x\right)$$

c.
$$y = -\frac{\pi}{4}x + 5(3\pi + 1)$$
 (on CAS)
1 mark

d.
$$\frac{\pi}{4} = -\frac{\pi}{4} \sin\left(\frac{\pi}{24}x\right) \rightarrow x = 36,84$$

 $tangentline(f(x), x, 36): y = \frac{\pi x}{4} - 9\pi + 5$
 $tangentline(f(x), x, 84): y = \frac{\pi x}{4} - 21\pi + 5$

1 mark

1 mark

e.
$$x' = -x + b$$
, $y' = ay + 5$
 $x = -x' + b$, $y = \frac{y'-5}{2}$
1 mark

$$x = -x + b, \ y = \frac{\pi}{a}$$

$$\frac{y'-5}{a} = -\frac{\pi}{4} \sin\left(\frac{\pi}{24}(-x'+b)\right)$$
1 mark
$$y' = -\frac{\pi}{a} a \sin\left(-\frac{\pi}{24}x'+\frac{b\pi}{a}\right) + 5$$

$$y = -\frac{\pi}{4} a \sin\left(-\frac{\pi}{24}x + \frac{\pi}{24}\right) + 5$$

$$\frac{b\pi}{24} = \frac{\pi}{2} \to b = 12, \quad -\frac{\pi}{4}a = 6 \to a = -\frac{24}{\pi}$$
 1 mark

f. Solve on CAS: x = 6, 30, 54, 78

2 marks

Question 2

a.
$$A(2, e^{-4} + 3)$$
 and $B(0, 4)$

2 marks

b.
$$Area = \int_0^2 (e^x - e^{-2x}) dx$$
 1 mark

$$= \left(e^{x} + \frac{e^{-2x}}{2}\right)_{0}^{2} = e^{2} - 1 + \frac{e^{-4}}{2} - \frac{1}{2} = e^{2} + \frac{1}{2e^{4}} - \frac{3}{2}$$
 1 mark

c. Tangent line:
$$y = ex + 3$$

 $C(0, 3)$
1 mark
1 mark

d.
$$\theta = \tan^{-1}(e^1) = 69.8 \approx 70^\circ$$

e.
$$Area = \int_{1}^{2} ((e^{x} + 3) - (ex + 3)) dx$$

= $e^{2} - \frac{5e}{2}$ 1 mark

1 mark

2 marks

f.	Tangent passing through orig	in: y = ex	1 mark
	$ea = e^{-2a} + 3$		1 mark
	a = 1.41		1 mark

g. Length =
$$\sqrt{2^2 + (e^{-4} + 3 - 3)^2}$$

= $\sqrt{4 + e^{-8}}$

1 mark

Question 3

a.
$$f(x) = 2 - \frac{7}{x+4}$$
 (Use propfrac on CAS or long division)
1 mark for "2"
1 mark for "-7"

b. *Range*: $R \setminus \{2\}$

1 mark

c.
$$x = 2 - \frac{7}{y+4} \rightarrow 1$$
 mark
 $f^{-1}(x) = -4 - \frac{7}{x-2}$ 1 mark

d. solve
$$-4 - \frac{7}{x-2} = x \rightarrow x = -1 \pm \sqrt{2}$$

 $(-1 + \sqrt{2}, -1 + \sqrt{2})$ and $(-1 - \sqrt{2}, -1 - \sqrt{2})$

2 marks

e. Area =
$$\int_{-1-\sqrt{2}}^{-1+\sqrt{2}} \left(\frac{2x+1}{x+4} - x\right) dx$$

1 mark for correct integral and 1 mark for correct terminal values

f.

i.
$$[-5, -4) \cup (-4, \infty)$$

1 mark

1 mark

ii.
$$\frac{d}{dx}(h(x)) = 0 \rightarrow x = -4 \pm \sqrt{7}$$
 1 mark
 $(-4 - \sqrt{7}, \ 2\sqrt{7} + 6) \text{ and } (-4 + \sqrt{7}, \ 6 - 2\sqrt{7})$

iii.
$$Distance = \sqrt{x^2 + (\frac{2x+1}{x+4} - x)^2}$$
 1 mark

$$\frac{d}{dx}(distance) = 0 \rightarrow x = -6.13, 0.11$$

Min distance at $x = 0.11$ (0.11, 0.19) 1 mark
Minimum distance = 0.22

1 mark

1 mark

2 marks

1 mark

Question 4

a. binomcdf(24, 0.1, 1, 24) = 0.9202

2 marks

b.
$$\Pr(X < 3 | X \ge 1) = \frac{binomcdf(24, 0.1, 1, 2)}{binomcdf(24, 0.1, 1, 24)}$$
 1 mark
= 0.5265

c. normcdf(0, 40, 60, 12) = 0.0478

- **d.** invnorm(1 0.4062, 60, 12) = 62.85
 - m = 63

e. $invnorm(0.28, 0, 1) = \frac{46-60}{c}$ $-0.5828 = -\frac{14}{c}$ 1 mark

$$c = 24.02$$
 1 mark

f. binompdf(24, 3, 0.28) = 0.0448

1 mark

g.
$$\Pr(\hat{P} \ge 0.06 \mid \hat{P} \ge 0.04)$$
 1 mark
= $\Pr(X \ge 3 \mid X \ge 2) = \frac{\Pr(X \ge 3)}{\Pr(X \ge 2)} = 0.617$

2 marks

h.
$$\left(\frac{5}{50} - 1.96\sqrt{\frac{5}{50}\left(1 - \frac{5}{50}\right)}{50}}, \frac{5}{50} + 1.96\sqrt{\frac{5}{50}\left(1 - \frac{5}{50}\right)}{50}}\right) = (0.02, 0.18)$$

2 marks

i.
$$\int_0^\infty f(x)dx = 1 \to k = \frac{e^{-\frac{1}{5}}}{4}$$
 1 mark

$$Mean = \int_0^\infty x \times f(x)dx = 4 \text{ minutes}$$

ii.
$$\int_{0}^{m} f(x) dx = \frac{1}{2} \rightarrow k = -1.54$$
, 3.36
Median = 3.36 *minutes*

1 mark

i.