	••••		••••					
--	------	--	------	--	--	--	--	--

Online & home tutors Registered business name: itute ABN: 96 297 924 083

Mathematical Methods

2018

Trial Examination I (1 hour)

Instructions

Answer all questions.

point.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale.

Question 1 The graph of $f(x) = mx^2 + 1$ and the graph of its inverse touch at a point.

Find the value(s) of m .	2 marks
Find the coordinates of the point where the two graphs are in contact.	2 marks
Question 2 Consider $f'(x) = 3(x-1)^2 + m$ where $m \in R$.	
Find the values of m for $f(x)$ to have two stationary points, one stationary points	oint and no stationary

2 marks

b. Write down a possible f(x) with no stationary point in $ax^3 + bx^2 + cx + d$ form. 2 marks

Question 3 Consider polynomial function $f(x) = 16x^4 + 8x^3 + 7$.	
a. Find the remainder when $f(x)$ is divided by $2x-1$.	1 mark
b. Specify a translation of $f(x)$ so that the resulting graph intersects the <i>x</i> -axis at $\left(\frac{1}{2}, 0\right)$.	1 mark
c. Let $g(x) = 2(2x-1)(4x^3 + px^2 + qx + 1)$ be the function representing the resulting graph in	part b.
Determine the values of p and q .	2 marks
Question 4 Consider $f(x) = \cos(\sin x) - 1$.	
a. Find a general solution to equation $f(x) = 0$.	2 marks
b. Find the coordinates of the stationary points of $f(x)$ in general form.	2 marks

Question 5 The graph of $f(x) = 1 + \sqrt{e^x}$ is shown below.

a. Accurately sketch the graph of the derivative function of f(x) on the diagram above. 2 marks

b. Accurately sketch the graph of the derivative function of $f^{-1}(x)$ on the diagram below. 3 marks

Question 6 Consider $y = \log_e(a \tan x)$ for $0 < x < \frac{\pi}{2}$ and $a \in R^+$.

a. Given
$$\sec x = \frac{1}{\cos x}$$
, show that $\frac{dy}{dx} = \frac{1}{(\sin x)(\cos x)}$. 2 marks

b. Hence or otherwise, find the exact value of $\int_{\frac{\pi}{2}}^{\frac{\pi}{3}} \frac{1}{(\sin x)(\cos x)} dx$. 2 marks

Question 7 The speed v (m s⁻¹) of a particle at time t (s) is given by $v = \frac{t+6}{(t+1)^2}$ where $t \ge 0$.

a. Starting from $v = \frac{t+6}{(t+1)^2}$ show that it can be expressed in the form $v = \frac{1}{t+1} + \frac{5}{(t+1)^2}$. 1 mark

b. Find the exact value of the average speed (m s⁻¹) from t = 0 to t = 4. 3 marks

Question 8 A city has a population of 1000000 people. Out of a random sample of 2500 people, 900 were obese. Estimate the proportion of obese people in the city, and its approximate 95% confidence interval. Correct answers to 2 decimal places.

3 marks

Question 9 Out of 1200 students at a high school 540 are male students.

a. A random sample of 25 students is selected from the school.

There are 10 male students and 8 VCE students in the sample. Among the 10 male students, 6 are VCE students. Find the probability that a student is male among the VCE students in the sample.

2 marks

b. Another random sample of 25 students is selected from the school. Find the probability (evaluation is not required) that 12 or 13 students are male.

2 marks

Question 10 $f(x) = \begin{cases} 1.5a, \\ a, \\ 0, \end{cases}$ is a probability density function	$1 \le x \le 3$ $4 \le x \le 6$ elsewhere of random variable X.	
a. Show that $a = 0.2$.		1 mark
b. Find the median of <i>X</i> .		1 mark
c. Calculate \overline{X} .		2 marks

End of exam