

Victorian Certificate of Education 2018

SOLUTIONS MS

					Letter
STUDENT NUMBER					

MATHEMATICAL METHODS

Written examination 1

Friday 1 June 2018

Reading time: 2.00 pm to 2.15 pm (15 minutes) Writing time: 2.15 pm to 3.15 pm (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 13 pages
- · Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1 (4 marks)

a. Let
$$f(x) = \frac{e^x}{\left(x^2 - 3\right)}$$
.

Find f'(x).

2 marks

$$f'(x) = \frac{e^x(x^2 - 3) - 2xe^x}{(x^2 - 3)^2}$$
 A1

$$= \frac{e^x (x^2 - 2x - 3)}{(x^2 - 3)^2}$$
 A1

b. Let
$$y = (x + 5) \log_{e}(x)$$
.

Find
$$\frac{dy}{dx}$$
 when $x = 5$.

$$\frac{dy}{dx} = \log_e(x) + \frac{x+5}{x}$$

when
$$x = 5$$
, $\frac{dy}{dx} = \log_e(5) + 2$ A1

Question 2 (4 marks)

Let $f(x) = -x^2 + x + 4$ and $g(x) = x^2 - 2$.

a Find g(f(3)). 2 marks

$$g(f(x)) = (-x^2 + x + 4)^2 - 2$$

$$g(f(3)) = 2$$
A1A1

b. Express the rule for f(g(x)) in the form $ax^4 + bx^2 + c$, where a, b and c are non-zero integers. 2 marks

$$f(g(x)) = -(x^4 - 4x^2 + 4) + x^2 + 2$$

$$= -x^4 + 4x^2 - 4 + x^2 + 2$$

$$= -x^4 + 5x^2 - 2$$
A1

Question 3 (2 marks)

Evaluate
$$\int_0^1 e^x - e^{-x} dx$$
.

$$= \left[e^{x} + e^{-x}\right]_{0}^{1}$$

$$= \left(e + \frac{1}{e}\right) - (1+1)$$

$$= e + \frac{1}{e} - 2$$
A1

Question 4 (3 marks)

Solve $\log_3(t) - \log_3(t^2 - 4) = -1$ for *t*.

$$\frac{t}{t^2 - 4} = 3^{-1}$$
 and $t > 0$ and $t^2 - 4 > 0$

$$\frac{t}{t^2 - 4} = \frac{1}{3}$$

$$3t = t^2 - 4$$

$$t^2 - 3t - 4 = 0$$

$$(t - 4)(t + 1) = 0$$

$$t = 4 \text{ as } t > 2$$
A1

Question 5 (3 marks)

Let
$$h: R^+ \cup \{0\} \to R$$
, $h(x) = \frac{7}{x+2} - 3$.

a. State the range of h. 1 mark

$$\left(-3, \frac{1}{2}\right]$$
 A1

b. Find the rule for h^{-1} .

$$x = \frac{7}{y+2} - 3$$

$$(x+3)(y+2) = 7$$

$$y+2 = \frac{7}{x+3}$$

$$h^{-1}(x) = \frac{7}{x+3} - 2$$
A1

Question 6 (4 marks)

The discrete random variable *X* has the probability mass function

$$Pr(X = x) = \begin{cases} kx & x \in \{1, 4, 6\} \\ k & x = 3 \\ 0 & \text{otherwise} \end{cases}$$

a. Show that $k = \frac{1}{12}$.

2	marks
---	-------

X	1	3	4	6
Pr(X=x)	k	k	4k	6k

A1 table

$$12k = 1 \Longrightarrow k = \frac{1}{12}$$
 A1

b. Find E(X).

X	1	3	4	6
Pr(X=x)	1/12	1/12	4/12	6/12

$$E(X) = \frac{1}{12} + \frac{3}{12} + \frac{16}{12} + \frac{36}{12} = \frac{56}{12} = \frac{14}{3}$$
 A1

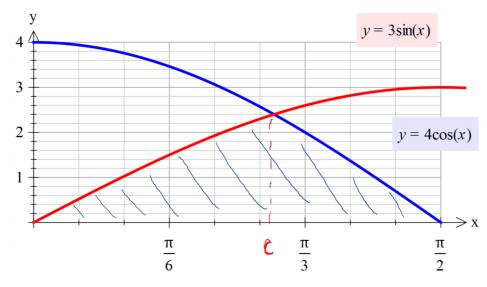
c. Evaluate $Pr(X \ge 3 \mid X \ge 2)$.

$$=\frac{\Pr(X\geq 3)}{\Pr(X\geq 2)}=1$$

Question 7 (9 marks)
Let
$$f: \begin{bmatrix} 0, \pi \\ - \end{bmatrix} \to R$$
, $f(x) = 4\cos(x)$ and $g: \begin{bmatrix} 0, \pi \\ - \end{bmatrix} \to R$, $g(x) = 3\sin(x)$.

Sketch the graph of f and the graph of g on the axes provided below.

2 marks



A1A1 for each correct graph

Let c be such that f(c) = g(c), where $c \in \begin{bmatrix} 0, \pi \\ \frac{\pi}{2} \end{bmatrix}$.

Find the value of sin(c) and the value of cos(c).

$$4\cos x = 3\sin x$$

$$16\cos^{2} x = 9\sin^{2} x$$

$$16\cos^{2} x = 9(1-\cos^{2} x)$$

$$\cos^{2} x = \frac{9}{25}$$

$$A1$$

$$\cos(c) = \frac{3}{5}, \sin(c) = \frac{4}{5}$$
A1A1

9

- **c.** Let A be the region enclosed by the horizontal axis, the graph of f and the graph of g.
 - i. Shade the region A on the axes provided in **part a.** and also label the position of c on the horizontal axis. A1

1 mark

ii. Calculate the area of the region *A*.

$$A = \int_{0}^{c} 3\sin x \, dx + \int_{c}^{\frac{\pi}{2}} 4\cos x \, dx$$

$$= [-3\cos x]_{0}^{c} + [4\sin x]_{c}^{\frac{\pi}{2}}$$

$$= -3\cos c + 3\cos 0 + 4\sin\left(\frac{\pi}{2}\right) - 4\sin c$$

$$= -3 \times \frac{3}{5} + 3 + 4 - 4 \times \frac{4}{5}$$

$$= 2$$
A1

ea

Question 8 (3 marks)

Let \hat{P} be the random variable that represents the sample proportions of customers who bring their own shopping bags to a large shopping centre.

From a sample consisting of all customers on a particular day, an approximate 95% confidence interval for the proportion p of customers who bring their own shopping bags to this large shopping centre was determined to be $\frac{1}{p}$, $\frac{1}{p}$.

50000 50000

a Find the value of \hat{p} that was used to obtain this approximate 95% confidence interval.

1 mark

$$5147 - 4853 = 294 / 2 = 147$$

$$4853 + 147 = 5000$$

$$\hat{p} = \frac{5000}{50000} = 0.1$$
A1

h Use the fact that 1.96 = 49 to find the size of the sample from which this approximate 95% 25

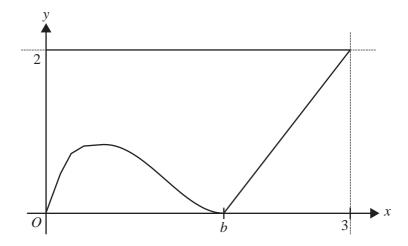
confidence interval was obtained.

$$\frac{49}{25}\sqrt{\frac{0.1\times0.9}{n}} = \frac{147}{50000}$$

$$n = 40000$$
A1

Question 9 (8 marks)

The diagram below shows a trapezium with vertices at (0, 0), (0, 2), (3, 2) and (b, 0), where b is a real number and 0 < b < 2.



On the same axes as the trapezium, part of the graph of a cubic polynomial function is drawn. It has the rule $y = ax(x - b)^2$, where a is a non-zero real number and $0 \le x \le b$.

a. At the local maximum of the graph, y = b.

Find a in terms of b. 3 marks

$$y = ax^3 - 2abx^2 + ab^2x$$

$$\frac{dy}{dx} = 3ax^2 - 4abx + ab^2$$

$$3ax^2 - 4abx + ab^2 = 0$$

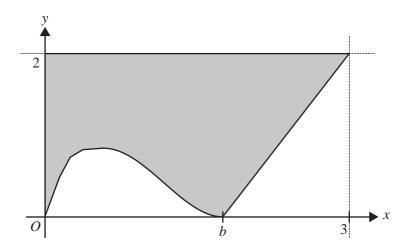
$$x = \frac{4ab \pm \sqrt{4a^2b^2}}{6a}$$

$$b = a \times \frac{b}{3} \left(\frac{b}{3} - b \right)^2$$

$$3b = ab \times \frac{4b^2}{9}$$

$$a = \frac{27}{4b^2}$$

The area between the graph of the function and the x-axis is removed from the trapezium, as shown in the diagram below.



b. Show that the expression for the area of the shaded region is $b + 3 - \frac{9b^2}{16}$ square units. 3 marks

$$A = \int_{0}^{b} 2 - ax(x - b)^{2} dx + \int_{b}^{3} \frac{2}{3 - b}(x - 3) + 2 dx$$

$$= \left[2x - \frac{ax^{4}}{4} + \frac{2abx^{3}}{3} - \frac{ab^{2}x^{2}}{2} \right]_{0}^{b} + \left[\frac{2}{3 - b} \left(\frac{x^{2}}{2} - 3x \right) + 2x \right]_{b}^{3}$$

$$= 2b - \frac{ab^{4}}{4} + \frac{2ab}{3}b^{3} - \frac{ab^{2}}{2}b^{2} + \frac{2}{3 - b} \left(\frac{9}{2} - 9 \right) + 6 - \frac{2}{3 - b} \left(\frac{b^{2}}{2} - 3b \right) - 2b$$

$$= b + 3 - \frac{9b^{2}}{16}$$
A1

Find the value of b for which the area of the shaded region is a maximum and find this c. maximum area.

$$A = b + 3 - \frac{9b^2}{16}$$
$$\frac{dA}{db} = 1 - \frac{9}{16} \times 2b$$

$$\frac{dA}{db} = 1 - \frac{9}{16} \times 2b$$

$$1 - \frac{9}{16} \times 2b = 0$$

$$b = \frac{8}{9}$$

$$A\left(\frac{8}{9}\right) = \frac{31}{9}$$

END OF QUESTION AND ANSWER BOOK

Victorian Certificate of Education 2018

MATHEMATICAL METHODS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.

A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$			
$\frac{d}{dx}\Big((ax+b)^n\Big) = an\Big(ax+b\Big)^n$	$b)^{n-1}$	$\int (ax+b)^n dx = \frac{\Box 1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$			
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$			
$\frac{d}{dx}\left(\log_e(x)\right) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$			
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$			
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$	$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$		
$\frac{d}{dx}\left(\tan\left(ax\right)\right) = \frac{a}{\cos^2(ax)}$	$= a \sec^2(ax)$				
product rule	$\frac{d}{dx} \left(uv \right) u \frac{dv}{dx} + v \frac{du}{dx}$	quotient rule	$\frac{\underline{d}(\underline{u})}{dx} \Big _{v} = \frac{v \frac{d\underline{u}}{-u} \frac{d\underline{v}}{u}}{v^{2}}$		
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$				

Probability

Pr(A) = 1 - Pr(A')		$\Pr(A \cup B) = \Pr$	$\Pr(A) + \Pr(B) - \Pr(A \cap B)$
$Pr(A B) = \frac{Pr(A \cap B)}{Pr(B)}$			
mean	$\mu = E(X)$	variance	$var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

3

Prob	ability distribution	Mean	Variance
discrete	$\Pr(X = x) = p(x)$	$\mu = \sum x p(x)$	$o^2 = \sum (x - \mu)^2 p(x)$
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x f(x) dx$	$o^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p} - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$