The Mathematical Association of Victoria

Trial Examination 2018 MATHEMATICAL METHODS

Trial Written Examination 2 - SOLUTIONS

SECTION A: Multiple Choice

Question	Answer	Question	Answer
1	D	11	В
2	А	12	Е
3	Е	13	В
4	С	14	D
5	С	15	В
6	Е	16	D
7	С	17	С
8	Е	18	А
9	D	19	A
10	А	20	В

Question 1

$$f: R \rightarrow R, f(x) = -2\sin(3x) + 1$$

Amplitude = 2
period = $\frac{2\pi}{3}$

Question 2

Answer A

$$f(x) = \frac{1}{(1-x)^2} + 2$$

• a reflection in the x-axis

$$y_1 = -\frac{1}{(1-x)^2} - 2$$

• a dilation of a factor of 2 from the *y*-axis.

$$g(x) = -\frac{1}{\left(1 - \frac{x}{2}\right)^2} - 2 = -\frac{4}{\left(2 - x\right)^2} - 2$$

Answer E

$$g(x) = \frac{1}{1 - x^2}$$

g is an even function, hence g(x) = g(-x).

OR

$$g(-x) = \frac{1}{1 - (-x)^2} = \frac{1}{1 - x^2} = g(x)$$

Question 4

Answer C

 $h: (-2,7] \rightarrow R, h(x) = 2x^2 - 4x + 7$ $h(x) = 2(x-1)^2 + 5$ The minimum value of *h* is at the turning point and the maximum occurs when x = 7. The range is [5,77].

Answer C

$$g(x) = \frac{1}{1+3x} \text{ and } f(x) = \left(x\right)^{\frac{2}{3}}$$

For $g(f(x))$, test that the range $f \subseteq$ domain g
Giving $[0,\infty) \subseteq R \setminus \left\{-\frac{1}{3}\right\}$
The domain of $g(f(x))$ is the same as the domain of f which is R .
The rule is $g(f(x)) = \frac{1}{1+3x^{\frac{2}{3}}}$.
 $g(f(x)): R \to R$, where $g(f(x)) = \frac{1}{1+3x^{\frac{2}{3}}}$

Question 6

Answer E

$$2\sin(2x) + 1 = 0, x \in [0, \pi]$$

$$\sin(2x) = -\frac{1}{2}$$

$$2x = \pi + \frac{\pi}{6}, 2\pi - \frac{\pi}{6}$$

$$2x = \frac{7\pi}{6}, \frac{11\pi}{6}$$

Giving $x = \frac{7\pi}{12}, \frac{11\pi}{12}$
Product = $77\left(\frac{\pi}{12}\right)^2$

<1.1 1.2 ▶	*MAVEam2 MC 🛁	RAD 🚺 🗙
$solve(2 \cdot sin(2 \cdot x))$	+1=0, <i>x</i>) 0≤x≤π	
	$x = \frac{7 \cdot \pi}{12}$ or	$x = \frac{11 \cdot \pi}{12}$
$\frac{7 \cdot \pi}{12} \cdot \frac{11 \cdot \pi}{12}$		$\frac{77\cdot \pi^2}{144}$

Answer C

$$(k+1)x^{2} - 2kx - (k-1) = 0$$

$$\Delta = (-2k)^{2} - 4(k+1) \times (-(k-1))$$

$$\Delta = 4k^{2} + 4(k^{2} - 1)$$

$$\Delta = 8k^{2} - 4$$

Real roots when $\Delta \ge 0$

Giving
$$8k^2 - 4 \ge 0$$

$$k \in \left(-\infty, -\frac{\sqrt{2}}{2}\right] \cup \left[\frac{\sqrt{2}}{2}, \infty\right)$$

5 Edit Action Interactive

6 Solve (8·k²-4≥0, k)

 $\left\{k \le \frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \le k\right\}$

Question 8 $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ Gives the equations $-x+1 = x', \ 4y-2 = y'$ Rearrange to get $-x+1 = x', \ x = 1 - x'$ $4y-2 = y', \ y = \frac{y'+2}{4}$ In the equation $y = 2\sqrt{x}$ $\frac{y'+2}{4} = 2\sqrt{1-x'}$ Giving $y' = 8\sqrt{1-x'} - 2$

Answer D

 $f(x) = 2\sin(3x) + 2\cos(3x)$ Average rate of change for $x \in \left[-\frac{\pi}{2}, \pi\right]$ $= \frac{f(\pi) - f\left(-\frac{\pi}{2}\right)}{\pi - \left(-\frac{\pi}{2}\right)}$ $= -\frac{8}{3\pi}$ **Constraints of the second sec**

Question 10

Answer A

$$f(x) = \sqrt{m - x^2}$$
$$f'(x) = \frac{1}{2\sqrt{m - x^2}} \times -2x$$
$$= \frac{-x}{\sqrt{m - x^2}}$$

Tangent has gradient of 3 when x = -2

Solve

$$\frac{2}{\sqrt{m-4}} = 3$$
$$m = \frac{40}{9}$$

Answer B

$$g(x) = \frac{-2}{(2x-3)^2} + 1$$

Solve $\frac{-2}{(2x-3)^2} + 1 = x$
Intersection a^{-1} and a is

Intersection
$$g^{-1}$$
 and g is $\left(\frac{1}{2}, \frac{1}{2}\right)$

Question 12

$$h(x) = \log_{e} (kx^{2} + 2)$$

The derivative of $g(h(x))$
= derivative of $g(h(x)) \times$ derivative of $h(x)$
= $\frac{2kx}{kx^{2} + 2}g'(h(x))$

Question 13

Answer B

The area enclosed by the graphs of f and g

$$= \int_{2}^{\frac{11}{3}} (g(x) - f(x)) dx$$
$$= \int_{\frac{11}{3}}^{2} (f(x) - g(x)) dx$$

Question 14 Answer D Let $y = f(x) = \frac{2}{1+x^2}$

$$A = \frac{1}{2} \left(f\left(\frac{1}{2}\right) + f(1) + f\left(\frac{3}{2}\right) + f(2) \right) = \frac{47}{26}$$

1.2 1.3	3 1.4	🕨 *2018MAVMC 🗢	RAD 🚺 🗙
Define A	$x = \frac{2}{1+x}$.2	Done
$\frac{1}{2} \cdot \left(f\left(\frac{1}{2}\right) \right)$	+ <i>f</i> (1)+f	$\left(\frac{3}{2}\right) + f(2)$	47 26

Question 15 Answer B

Area of a circle is $A = \pi r^2$

In the first quadrant there is $\frac{1}{4}$ of a circle and r = 2.

So the total area is $\frac{1}{4} \times \pi \times 4$.

Rearrange $x^{2} + (y-2)^{2} = 4$ to make *x* the subject

$$x = \sqrt{4 - (y - 2)^2}, x > 0 \text{ in the first quadrant.}$$
$$\frac{1}{3} \times \frac{1}{4} \times \pi \times 4 = \int_0^d \sqrt{4 - (y - 2)^2} dy$$

Question 16

Answer D

n = 300, the number of successes is 265

(0.840, 0.926)

© The Mathematical Association of Victoria, 2018

1.3 1.4	1.5 🕨 *2018	MAVMC 🤝 🛛 🛱	X
zInterval_1H	Prop 265,300),0.98: stat.results	
	"Title"	"1-Prop z Interval"	
	"CLower"	0.840216	
	"CUpper"	0.92645	
	"ĝ"	0.883333	
	"ME"	0.043117	
	"n"	300.	

Question 17 Answer C

 $\Pr(A) = 0.6$ and $\Pr(A \cap B) = 0.1$

For independent events $\Pr(A) \times \Pr(B) = \Pr(A \cap B)$

$$0.6 \times \Pr(B) = 0.1$$

$$\Pr(B) = \frac{1}{6}$$

$$\Pr(A \cap B') = \frac{3}{5} - \frac{1}{10} = \frac{1}{2}$$
then
$$\Pr(A' \cap B') = \frac{5}{6} - \frac{1}{2} = \frac{1}{3}$$

$$\boxed{B} \qquad \frac{1}{10} \qquad \frac{1}{15} \qquad \frac{1}{15}$$

B	1	1	1
	$\overline{10}$	15	6
B '	1	1	5
	2	3	6
	3	2	1
	5	5	

Or using a Venn diagram

$$\Pr(A \cap B) = \frac{1}{10}, \ \Pr(B \cap A') = \frac{1}{15}, \ \Pr(A \cap B') = \frac{1}{2}, \ \Pr(A' \cap B') = \frac{1}{3}$$

© The Mathematical Association of Victoria, 2018

Question 18Answer A

 $X \sim \operatorname{Bi}(n, 0.2)$

 $\Pr(X > 1) > 0.8$

$$1 - (\Pr(X = 0) + \Pr(X = 1)) > 0.8$$
$$\Pr(X = 0) + \Pr(X = 1) < 0.2$$
$$0.8^{n} + \binom{n}{1} 0.2 \times 0.8^{n-1} < 0.2$$

n = 14

I.4 1.5 1.6 → *2018MAVMC
 PAD (
 N = -3.64533 or n=13.9373
 Solve(n · p=20 and
$$\sqrt{n · p · (1-p)} = 4, n, p$$
)
 n=100 and $p = \frac{1}{5}$

Answer A

 $X \sim N(\mu, \sigma^2)$

0.6% of giraffes have a gestation period greater than 155 days

 $\Pr(X > 155) = 0.006$

and 2.3% of giraffes have a gestation period less than 110 days

 $\Pr(X < 110) = 0.023$

Solve $\frac{155-\mu}{\sigma} = 2.512...$ and $\frac{110-\mu}{\sigma} = -1.995...$ for μ and σ

 μ = 130 and σ =10

1.5 1.6 1.7 ▶ *2018MAVMC -	RAD 🚺 🗙
invNorm(0.994,0,1)	2.51214
invNorm(0.023,0,1)	-1.99539
solve $\left(\frac{155-a}{b} = 2.5121443283176 \text{ an} \right)$	$d \xrightarrow{110-a}{b}$ =9.98328

Question 20

Answer B

$$f(x) = \begin{cases} \frac{3}{34}x & 0 \le x \le 2\\ \frac{3}{68}x^2 & 2 < x \le 4\\ 0 & \text{elsewhere} \end{cases}$$

$$\operatorname{sd}(X) = \sqrt{E(X^{2}) - (E(X))^{2}}$$
$$\operatorname{sd}(X) = \sqrt{\left(\int_{0}^{4} x^{2} \times f(x) - \left(\int_{0}^{4} x \times f(x)\right)^{2}\right)} = \frac{\sqrt{5765}}{85}$$

SECTION B

Question 1

$$f: R \to R, f(x) = 18x^2 - 36x^4$$

a. (0, 0) 1A

b. Solve
$$f(x) = 0$$

 $(0,0), \left(\frac{\sqrt{2}}{2}, 0\right), \left(-\frac{\sqrt{2}}{2}, 0\right)$ **1A** any two correct **2A** all correct

c. $f'(x) = 36x - 144x^3$ Solve f'(x) = 0Turning points $(0,0), (\frac{1}{2}, \frac{9}{4}), (-\frac{1}{2}, \frac{9}{4})$

d. Sketch a graph of the derivative function with equation $f'(x) = 36x - 144x^3$. The maximum occurs at the turning point.

1A

Solving $f''(x) = 36 - 432x^2 = 0$ for points of inflexion gives $x = \pm \frac{\sqrt{3}}{6}$. From the graph given, gradient at its maximum at $x = \frac{\sqrt{3}}{6}$. 1A

e. Line joining A(-k, g(-k)) and B(k, g(k)) where $g(k) = 18k^2 - 36k^4$, $g(-k) = 18k^2 - 36k^4$ Gradient $= \frac{g(k) - g(-k)}{k - (-k)} = 0$ Equation of the straight line y - g(k) = 0(x - k) y = g(k) $y = 18k^2 - 36k^4$ 1A

© The Mathematical Association of Victoria, 2018

f.i. Area when $k = \frac{1}{2}$ Area $= 2\int_{0}^{\frac{1}{2}} \left(\frac{9}{4} - g(x)\right) dx$ $= \frac{6}{5}$ sq units

f.ii. Area when
$$k = \frac{1}{\sqrt{2}}$$

Area $= 2 \int_{0}^{\frac{1}{\sqrt{2}}} (g(x) - 0) dx$
 $= \frac{6\sqrt{2}}{5}$ sq units 1A

Graph showing y = 0 and g(x), then showing enclosed Area $\frac{6\sqrt{2}}{5} \approx 1.697$

f.iii. Enclosed area when $\frac{1}{2} \le k \le \frac{1}{\sqrt{2}}$

Let equation of line $h(k) = 18k^2 - 36k^4$

Solve h(k) = g(x) to find points of intersection of graph of g(x) and straight line.

Points of intersection at
$$x = \pm k$$
, $x = \pm \frac{\sqrt{-2(2k^2 - 1)}}{2}$ 1M

The area we are looking at is represented by the general case shown below.

Within domain $\frac{1}{2} \le k \le \frac{1}{\sqrt{2}}$, minimum area occurs at $\sqrt{10}$ **1A**

$$k = \frac{\sqrt{10}}{5}$$

Or to visualise the answer trace value as below.

b. shape 1A, drawing along the axis 1A, correct coordinates 1A

define
$$g(x) = \frac{1}{10} (-\cos(\frac{\pi x}{2}) + 1)$$

done

$$\int_{0}^{10} xg(x) dx$$

$$\frac{4}{5 \cdot \pi^{2}} + 5$$
c.ii. Median, *m*, solve $\frac{1}{10} \int_{0}^{m} \left(-\cos\left(\frac{\pi t}{2}\right) + 1 \right) dt = 0.5$
If
 $m = 5.5$ hours
If
define $g(x) = \frac{1}{10} (-\cos(\frac{\pi x}{2}) + 1)$
define $g(x) = \frac{1}{10} (-\cos(\frac{\pi x}{2}) + 1)$
done
solve $\left(\int_{0}^{m} g(x) dx = 0.5 \right) (5 + 1) dt = 0.5$
If
 $m = 5.5$ hours
If
 $m = 5.470516209$

d.
$$\Pr(T \le 6) = \frac{3}{5}$$

e.
$$\Pr(T > 3 | T < 6) = \frac{\Pr(3 < T < 6)}{\Pr(T < 6)}$$
 1M
= 0.3939 1A

1M

Α

g.
$$X \sim Bi(5, 0.4)$$

 $Pr(X = 5 | X \ge 3) = \frac{Pr(X = 5)}{Pr(X = 3) + Pr(X = 4) + Pr(X = 5)}$
 $= \frac{0.4^5}{{}^5C_3 0.4^3 0.6^2 + {}^5C_4 0.4^4 0.6^1 + 0.4^5}$
 $= \frac{1}{31}$
1A

h. Standard deviation of
$$\hat{P} = \sqrt{\frac{p(1-p)}{n}}$$
 where $p = 0.55, n = 400$

$$= \sqrt{\frac{0.55(1 - 0.55)}{400}}$$

= 0.0249

$$\sqrt{\frac{0.55(1-0.55)}{400}}$$
0.02487468593

i.
$$\frac{60}{100} \times 400 = 240$$

 $X \sim Bi(400, 0.55)$
 $Pr(X > 240) = Pr(X \ge 241)$
 $= 0.0194$
1M

j.
$$Y \sim N(0.55, (0.02487...)^2)$$

Pr $(Y > 0.6) = 0.022$ 1A

a. Shape 1A

Asymptote x = 0 and axial intercept (0.30, 0.00)

b.
$$f^{-1}(x) = \frac{\sqrt{4e^x + 9} - 3}{2}$$
 1A

(0.46, 0.46) and (2.77, 2.77)	1A
-------------------------------	----

c. Translation of -k units to the right. **1A**

d.
$$d(x) = x - \frac{\sqrt{(4e^x + 9)} - 3}{2}$$
 1A

e. Solve d'(x) = 0 or graph d **1M**

Maximum (1.72..., 0.421...)

k = -0.421 1A

Check with the graph

f. Dilation by a factor of *a* from the *y*-axis. **1A**

g. Solve $f_2'(x) = 1$ for *x*.

$$x = \frac{\sqrt{9a^2 + 4 - 3a + 2}}{2}$$
 1A

h. Solve
$$f_2(x) = x$$
 and $x = \frac{\sqrt{9a^2 + 4 - 3a + 2}}{2}$ for *a*. **1M**

a = 1.395...

= 1.40 correct to two decimal places **1A**

Check with the graph.

a. period is 4π	1A
range is $[1, 3]$	1A

b. Solve d(t) = 1.7 for *t*.

$$\frac{4\pi - (4.340... - 1.942...)}{4\pi}$$
 1M

= 0.80918... = 0.809 correct to three decimal places **1A**

d.
$$\theta = \tan^{-1}\left(\frac{25}{2}\right)$$

1.44 1.45 1.46 ▶ *MAV2018EA -	DEG 🚺 🗙
$\tan^{-1}\left(\frac{25}{2}\right)$	85.426

e. Total Volume =
$$\frac{25 \times 10}{2} (1+3) \text{ m}^3$$
 1M

$$=500 \text{ m}^3$$
 1A

f. Solve
$$\int_{0}^{a} \left(\frac{dV}{dt}\right) dt = 500$$
 for *a*. **1M**

$$a = 250.71 \text{ min}$$
 1A

1.45 1.46 1.47 ► *MAV2018EA
solve
$$\begin{pmatrix} a \\ r(x) dx = 500, a \\ 0 \end{pmatrix}$$

 $a = -5 \cdot (\sqrt{5} \cdot (\sqrt{2} + 125) - 25) \text{ or } a = 5 \cdot (\sqrt{5} \cdot (\sqrt{2} \cdot 125) + 125) + 125)$
solve $\begin{pmatrix} a \\ r(x) dx = 500, a \\ 0 \end{pmatrix}$
 $a = -0.70512 \text{ or } a = 250.71$

g. $1 \times 25 \times 10 = 250 \text{ m}^3 \text{ out}$

Hence depth 2 m 1A

h.
$$V_{pumped} = \int \left(\frac{dV}{dt}\right) dt$$

= $2t + \frac{2}{2t + \sqrt{2}} + c$, substitute (0, 0)

Hence
$$c = -\frac{2}{\sqrt{2}} = -\sqrt{2}$$
 1M

$$V_{remaining} = 500 - \left(2t + \frac{2}{2t + \sqrt{2}} - \frac{2}{\sqrt{2}}\right)$$
 1H

Average value =
$$\frac{1}{250.705...} \int_{0}^{250.705...} \left(500 - \left(2t + \frac{2}{2t + \sqrt{2}} - \frac{2}{\sqrt{2}} \right) \right) dt$$
 1H

 $= 250.69 \text{ m}^3$ correct to two decimal places **1A**

END OF SOLUTIONS