

THE SCHOOL FOR EXCELLENCE (TSFX) UNITS 3 & 4 MATHEMATICAL METHODS 2018 WRITTEN EXAMINATION 2 – SOLUTIONS

Errors and updates relating to this examination paper will be posted at <u>www.tsfx.com.au/examupdates</u>

SECTION A

1	2	3	4	5	6	7	8	9	10
D	С	Е	С	А	Е	С	D	D	Е
11	12	13	14	15	16	17	18	19	20

D

С

D

А

С

А

QUESTION 1 Answer is D

D

В

From the graph, $x \in (-\infty, 0]$ for $y \ge 0$.

В

А

QUESTION 2 Answer is C

$$f(x) = (x-1)(x+3)P(x) + m(x-1) + n$$

Let $x = 1$: $-10 = (1-1)(1+3)P(1) + m(1-1) + n$
 $n = -10$
Let $x = -3$: $2 = (-3-1)(-3+3)P(-3) + m(-3-1) + n$
 $2 = -4m + n$
 $2 = -4m - 10$
 $m = -3$

QUESTION 3 Answer is E

The equations could be written as: y = -(a+2)x+3 and $y = -\frac{a}{2}x+\frac{b}{2}$

Linear equations will have a unique solution if the gradients are **not** equal.

Equating the gradients: $-(a+2) = -\frac{a}{2}$ if a = -4.

A unique solution will exist if $a \in R \setminus \{-4\}$ and b can take any value.

QUESTION 4 Answer is C

The maximum value on the graph occurs at $x = -\frac{\pi}{24}$ and so going any further to the left would cause the function to not be 1-to-1. Hence the largest value of *a* is $\frac{\pi}{24}$.

QUESTION 5 Answer is A

$$g(x) = x^3 - 4x$$

Dilation by a factor of 2 from the y-axis: $g_1(x) = \left(\frac{x}{2}\right)^3 - 4\left(\frac{x}{2}\right) = \frac{x^3}{8} - 2x$ Reflection in the y-axis: $g_2(x) = \frac{(-x)^3}{8} - 2(-x) = -\frac{x^3}{8} + 2x$

Translation of 2 units in the negative direction of the *x*-axis: $g_3(x) = -\frac{(x+2)^3}{8} + 2(x+2)$

Hence
$$f(x) = 4 + 2x - \frac{(x+2)^3}{8}$$
.

QUESTION 6 Answer is E

The minimum turning point for the graph of $y = (x+2)^2(x-3)^3$ occurs at (0,-108). Therefore, if anything greater than 108 is added to the equation there would only be one *x*-intercept.

Hence -p > 108 and so p < -108.

Also, if p > 0, the maximum turning point (-2,0) and stationary point of inflection (3,0) will be translated down under the *x*-axis.

Hence p > 0 and p < -108 satisfy.

QUESTION 7 Answer is C

Consider each function in the functional equation f(x + y) = f(x)f(y):

Option A: $f(x) = \log_e(x)$

L.H.S. = $\log_e(x+y)$ R.H.S. = $\log_e(x)\log_e(y)$. L.H.S. \neq R.H.S.

Option B: $f(x) = e^{(x-1)}$

L.H.S. = $e^{(x+y-1)}$ R.H.S. = $e^{(x-1)} \times e^{(y-1)} = e^{(x+y-2)}$. L.H.S. \neq R.H.S.

Option C: $f(x) = e^{-x}$

L.H.S. $= e^{-(x+y)}$ R.H.S. $= e^{-x} \times e^{-y} = e^{-(x+y)}$. L.H.S. = R.H.S

QUESTION 8 Answer is D

$$f(x) = x^{3}g(x) - 3x$$

$$f'(x) = x^{3}g'(x) + 3x^{2}g(x) - 3$$

$$f'(3) = (3)^{3}g'(3) + 3(3)^{2}g(3) - 3$$

$$f'(3) = (27)(2) + (27)(-1) - 3$$

$$f'(3) = 54 - 27 - 3 = 24$$

QUESTION 9 Answer is D

Average rate of change = $\frac{f(4) - f(2)}{4 - 2} = \frac{60 - 6}{4 - 2} = 27$

QUESTION 10 Answer is E

The graph of y = f(x) has a stationary point of inflection at x = 1 and a local minimum at x = 6 so B, C and D are incorrect. A is incorrect as it requires the inclusion at x = 6. The answer is E.

QUESTION 11 Answer is B

$$\int \left(\frac{3}{2x-1}\right) dx = \int \left(\frac{3 \times 2 \times \frac{1}{2}}{2x-1}\right) dx = \frac{3}{2} \int \left(\frac{2}{2x-1}\right) dx = \frac{3}{2} \log_e(2x-1) + c$$

$$\therefore \int_1^k \left(\frac{3}{2x-1}\right) dx = \frac{3}{2} [\log_e(2x-1)]_1^k$$

$$\frac{3}{2} [\log_e(2x-1)]_1^k = \frac{3\log_e 5}{2}$$

$$\therefore \frac{3}{2} (\log_e(2k-1) - \log_e 1) = \frac{3\log_e 5}{2}$$

$$\frac{3}{2} \log_e(2k-1) = \frac{3}{2} \log_e 5$$

$$2k-1=5$$

$$k=3$$

QUESTION 12 Answer is D

$$\int_{-1}^{3} (4f(x) - 3x) dx = \int_{-1}^{3} (4f(x)) dx - 3\int_{-1}^{3} (x) dx$$
$$= 2\int_{-1}^{3} (2f(x)) dx - 3\left[\frac{x^2}{2}\right]_{-1}^{3}$$
$$= -2\int_{-1}^{-1} (2f(x)) dx - 3\left(\frac{9}{2} - \frac{1}{2}\right)$$
$$= -2(-5) - 3(4)$$
$$= 10 - 12 = -2$$

QUESTION 13 Answer is B

As
$$\frac{d}{dx}(x\log_e x) = 1 + \log_e x$$
 then $\int (1 + \log_e x) dx = x\log_e x + c$
 $\int (1) dx + \int (\log_e x) dx = x\log_e x + c$
 $x + \int (\log_e x) dx = x\log_e x + c$
 $\int (\log_e x) dx = x\log_e x - x + c$

QUESTION 14 Answer is A

$$Area = \int_{0}^{2} \left(\sqrt{4 - x^{2}}\right) dx - \int_{0}^{1} 2\sqrt{(1 - x)} dx$$
$$= \pi - \frac{4}{3}$$
$$= \frac{3\pi - 4}{3} \text{ square units.}$$

QUESTION 15 Answer is A

The probability that they are all blue is $\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}$. The probability that they are all red is $\frac{3}{8} \times \frac{2}{7} \times \frac{1}{6}$. The probability that they are all the same colour $= \frac{60+6}{8 \times 7 \times 6} = \frac{11}{56}$. So the probability that they are NOT all the same colour is $1 - \frac{11}{56} = \frac{45}{56}$.

QUESTION 16 Answer is D

Using simultaneous equations for the sum of the probabilities and the mean, E(X) = 2.5 gives the values m = 0.1 and n = 0.5.

$$E(X^{2}) = m + (4 \times 2m) + 9n + (25 \times 0.1)$$

= m + 8m + 9n + 2.5
= 9m + 9n + 2.5
= 7.9

Variance $= E(X^2) - [E(X)]^2$ = 7.9 - 2.5² = 1.65

. w i	Edit Ba	tion	Inter	ractiv	20 X X
<u> </u>			Inter	activ	/e ::::
백금() (d×4	1.486	 ▼ 7t	/▼	≥
<u> </u>		<u>,</u>		1	
K aw	+n=0.:	,			
լտ+	4m+3n	+0.5	=2.5	lm, n	
		{m=	0.1,	n=0.	5}
Þ					
					Щ
					- T
mth	abc (cat	2D	XĽ	ÐŦ
mth	abc (विद्या	cat∬ 5]4]	20 7 9	<u>×</u> :	
mth 12	abc (catí 56	2D 7 8	<u>×</u> 2	
mth 12	abc (349 Jer	catí 56 ty	2D 7 8	<u>></u> 90 0 P	
mth 12 1900	abc <u>(</u> 349 Jer	cat 56 ty fq	2D 7 8 U i	<u>х</u> 90 0 Р к 1	
mth 12 % a % a	abc (345 Jer sd	cat) 56 ty fg	2D 7 8 U i h j	<u>×</u> 90 0 Р к 1	
mth 12 %•a •	abc (345 /er sd zzc	cat) 56 ty fg vb	2D 7 8 U i h j	<u>У</u> 90 0 Р к 1	
mth 12 % a % a αβτ	abc (349 er sd z x c	cat 56 ty fg vb	2D 7 8 0 i h j n m ACE	90 90 k 1 smbl	
mth 12 9 μ 9 μ 9 μ 9 μ 9 μ 9 μ 9 μ 9 μ 9 μ 9 μ	abc (34) er sd zzc MATH	cat 56 ty fg vb	2D 78 Ui hj ACE	90 	

QUESTION 17 Answer is C

Binomial:
$$n = 10, p = 0.7$$

Let X = number that gain entry within 6 minutes

 $Pr(X \ge 8) = 0.3827828$ Pr(X = 9) = 0.1210608

$$\Pr(9 enter | \ge 8 enter) = \frac{\Pr(9 enter \cap \ge 8 enter)}{\Pr(\ge 8 enter)}$$
$$= \frac{\Pr(9 enter)}{\Pr(\ge 8 enter)}$$
$$= \frac{0.12106....}{0.38278....} = 0.316265$$

QUESTION 18 Answer is D

 $\mu = 50$ and $\sigma = 2$

Required probability is Pr(X < 42) + Pr(X > 54)

When X = 42 then Z = -4When X = 54 then Z = 2

So the probability is: Pr(Z < -4) + Pr(Z > 2)

QUESTION 19 Answer is A

 $z_{1} = \frac{5-\mu}{\sigma} \text{ and } z_{2} = \frac{8-\mu}{\sigma}$ Pr(X < 5) = 0.15 $Pr\left(z_{1} < \frac{5-\mu}{\sigma}\right) = 0.15 \text{ therefore, } z_{1} = -1.03643$ Pr(X < 8) = 0.70 $Pr\left(z_{2} < \frac{8-\mu}{\sigma}\right) = 0.70 \text{ therefore, } z_{2} = 0.524401$ $-1.03643 = \frac{5-\mu}{\sigma}$ $\therefore -1.03643\sigma = 5-\mu \quad \text{Equation 1}$ $0.524401 = \frac{8-\mu}{\sigma}$ $\therefore 0.524401\sigma = 8-\mu \quad \text{Equation 2}$ Equation 1 - Equation 2:

 $1.56083\sigma = 3$ $\therefore \sigma = 1.92205$

Substitute $\sigma = 1.92205$ into Equation 1: $\mu = 6.99208$

QUESTION 20 Answer is C

p = 0.45

A 95% confidence interval gives
$$z = 1.96$$

$$M = 0.01$$

$$M = Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
$$0.01 = 1.96 \sqrt{\frac{0.45(1-0.45)}{n}}$$

n = 9507.96

Therefore, 9508 people need to be surveyed.

SECTION B

Marking Legend:

- $\left(A\frac{1}{2}\times 4\downarrow\right)$ means four answer half-marks rounded **down** to the next integer. Rounding occurs at the end of a part of a question.
- M1 = 1 Method mark.
- A1 = 1 Answer mark (it **must** be this or its equivalent). •
- H1 = 1 consequential mark (His/Her mark...correct answer from incorrect statement • or slip, arithmetic slip preventing an A mark).

QUESTION 1 (18 marks)

a.
$$S_1 \sim N(60, 2)$$

 $\Pr(X < 58) = 0.0786$ A1
b. (i)
 $S_2 \sim Bi(n, p)$
 $Giving n = 36, p = \frac{5}{6}$ A2
(ii)
 $\Pr(30 < X < 36) = 0.6067$ binomialCDf $\left(30, 36, 36, \frac{5}{6}\right)$
 $\Pr(X \ge 2) \le 0.99$
 $1 - \left[\Pr(X = 0) + \Pr(X = 1)\right] \le 0.99$
Solve $\Pr(X = 0) + \Pr(X = 1) = 0.01$
 ${}^{n}C_0 \left(\frac{5}{6}\right)^0 \left(\frac{1}{6}\right)^n + {}^{n}C_1 \left(\frac{5}{6}\right)^1 \left(\frac{1}{6}\right)^{n-1} = 0.01$ M1

Gives n = 4.31Maximum number of walks is 5.

solve
$$\left(\left(\frac{1}{6}\right)^{x} + x \cdot \left(\frac{1}{6}\right)^{x-1} \cdot \left(\frac{5}{6}\right)^{1} = 0.01, x\right)$$

{x=-0.1985988325, x=4.308994869}

c. (i)
$$\int_{0}^{3} (0.1) dt + \int_{3}^{9} (a(t-3)^{2} + 0.1) dt = 1$$

Giving 72a + 0.9 = 1

$$\therefore a = \frac{1}{720}$$
 M1

(ii)
$$E(X) = \int_{0}^{3} t(0.1) dt + \int_{3}^{9} t \left(\frac{1}{720}(t-3)^{2} + 0.1\right) dt = 4.8$$

Edit Action Interactive								
$ \begin{array}{c} 0.5 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$								
	[0.1	,		0 ≤ t<3				
Define $f(t) = \left\{ \frac{1}{720} \cdot (t-3)^2 + 0.1, 3 \le t \le 9 \right\}$								
						done		
$\int_0^9 t \cdot f(t) dt$								
						4.8		
þ								
Alg	Standard	Real	Rad				(111	

A1

d. (i)
$$E(\hat{P}) = p = 0.55$$

 $sd(\hat{P}) = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.55(1-0.55)}{100}}$
 $\therefore sd(\hat{P}) = 0.0497$
IM 1A
 $\sqrt{\frac{0.55(0.45)}{100}}$
 0.04974937186

(ii)
$$X \sim Bi(100, 0.55)$$
 1M
 $Pr(X > 60) = Pr(X \ge 61) = 0.1343$ 1A
binomialCDf (61, 100, 100, 0.55)
0.1342540411

(iii)
$$Y \sim N(0.55, 0.0497...^2)$$

Pr(X > 60) = 0.157
1M
1A
normCDf (0. 6, 1, 0.049749, 0.55)

0.1574375121

e. From part b (i)
$$S_2 \sim Bi\left(n, \frac{5}{6}\right)$$

 $E(\hat{P}) = p = \frac{5}{6}$
 $sd(\hat{P}) = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{5}{6}\left(1-\frac{5}{6}\right)}{200}} = 0.02635$
 $\sqrt{\frac{5}{6}\left(\frac{1}{6}\right)}{200}}$
0.02635231383

95% CI =
$$(\mu - 1.96\sigma \le X \le \mu + 1.96\sigma)$$

95% CI = $(\mu - 1.96\sigma, \mu + 1.96\sigma) = \left(\frac{5}{6} - 1.96 \times 0.02635, \frac{5}{6} + 1.96 \times 0.02635\right)$
CI = $(0.781687...., 0.884979...)$
CI = $(0.78, 0.88)$
 $\frac{5}{6} - 1.96(0.02635)$
0.7816873333
 $\frac{5}{6} + 1.96(0.02635)$
0.8849793333

1A

OR USING STATISTICS ON CAS: CI = (0.78, 0.89)

QUESTION 2 (18 marks)

a. (i)
$$h(0) = \pi^2 + 3$$
 1A

(ii) $h(\pi) = 3$

(iii) $\{t: h(t) = 0\}$ is in the second section when $t = \frac{7\pi}{4}$. 1**A**

only 1 root found

solve(3·sin(2·t)+3=0| $\pi \le t \le 6$,t) $\left\{t=\frac{7\cdot\pi}{4}\right\}$

(i) Yes because all points exist for $0 \le t < 6$. In particular, the two sections b. of the graph meet at the point $(\pi, 3)$. 2A

(ii) Cusp at
$$(\pi, 3)$$
, Differentiable for $t \in (0, \pi) \cup (\pi, 6)$ 1A

1A

0.5 marks for each of the following: X intercept, Y intercept, coordinates of the endpoint, point of contact, maximum stationary point, shape. Round down to the nearest integer.

$$=\frac{(3-\pi)^3}{3} + \frac{\pi^3}{3} + 9$$
 1M

(iii) Six equal width strips, width of each strip 0.5 units.

Let
$$f(t) = (t - \pi)^2 + 3$$

Left endpoint approximation $= \frac{1}{2} \left(f(0) + f\left(\frac{1}{2}\right) + f(1) + f\left(\frac{3}{2}\right) + f(2) + f\left(\frac{5}{2}\right) \right)$

$$\| \frac{1}{2} (f(0) + f(\frac{1}{2}) + f(1) + f(\frac{3}{2}) + f(2) + f(\frac{5}{2}))$$
21.9218683

Left endpoint approximation = 21.922

1A

This approximation overestimates the area found in **part (ii)** because this section of the graph is concave up so each rectangle overestimates the area.

e. (i) For
$$h(t) = \begin{cases} (t-\pi)^2 + 3, 0 \le t < \pi \\ 3\sin(2t) + 3, \pi \le t \le 6 \end{cases}$$

For a continuous function: Average value $=\frac{1}{6-0}\int_{0}^{6} (f(t))dt$ 1M

= \$476,000 to nearest \$1000

1**A**

(ii) Equation of horizontal line in graphs: y = 3

Equation of horizontal line in graphs: y = 3

Solve h(t) < 3:

Gives the section: 6-4.7124 = 1.2876**1M**1.2876 proportion of 6 months**1M**

Answer = 21.46% To nearest % = 21%

1A

QUESTION 3 (11 marks)

$$v(t) = a \sin\left(\frac{5\pi}{3}(t+\beta)\right) + c$$
 with $v(t) \ln km / hr$, t in hours and a, β , c are real constants.

a. Range = [0,120], giving amplitude = 60.

Period =
$$\frac{2\pi}{\frac{5\pi}{3}} = \frac{6}{5}$$
 so for the graph to rise from $v = 0$ to $v = 120$ with less than one

cycle, the graph must be reflected over the *t*-axis giving a = -60. **1M**

Vertical translation will be 60 giving c = 60, so c + a = 0 **1M**

b.
$$v(t) = -60\sin\left(\frac{5\pi}{3}(t+\beta)\right) + 60$$

Find β such that v(0) = 0

$$0 = -60 \sin\left(\frac{5\pi\beta}{3}\right) + 60$$
$$\therefore \sin\left(\frac{5\pi\beta}{3}\right) = 1$$
$$\Rightarrow \frac{5\pi\beta}{3} = \frac{\pi}{2}$$

Giving $\beta = \frac{3}{10}$ as required

We now have $v(t) = -60\sin\left(\frac{5\pi}{3}\left(t + \frac{3}{10}\right)\right) + 60$

c.
$$x(t) = \int \left(-60\sin\left(\frac{5\pi}{3}\left(t + \frac{3}{10}\right)\right) + 60\right) dt$$
 1M
 $= 60 \times \frac{3}{5\pi} \cos\left(\frac{5\pi}{3}\left(t + \frac{3}{10}\right)\right) + 60t + c$
 $= \frac{36}{\pi} \cos\left(\frac{5\pi}{3}\left(t + \frac{3}{10}\right)\right) + 60t + c$ 1M

t = 0, x = 0 gives:

$$0 = \frac{36}{\pi} \cos\left(\frac{5\pi}{3}\left(\frac{3}{10}\right)\right) + c$$

$$\therefore 0 = \frac{36}{\pi} \cos\left(\frac{\pi}{2}\right) + c \therefore c = 0$$

So $x(t) = \frac{36}{\pi} \cos\left(\frac{5\pi}{3}\left(t + \frac{3}{10}\right)\right) + 60t$ 1A

Or from CAS giving a correct but different form:

$$\int_{\Box}^{\Box} \mathbf{v}(t) dt = \frac{60 \cdot t \cdot \pi - 36 \cdot \sin\left(\frac{5 \cdot t \cdot \pi}{3}\right)}{\pi}$$

d.

using displacement graph

or using velocity graph 2A

1M

1A

e. Solve v(t) = 100

Maximum is at t = 0.6Gives by symmetry: $2 \times (0.6 - 0.4394)$ = 0.3212 hour.

To the nearest minute: 19 minutes

y = 100 (0.4394,100) x Rad Real

© The School For Excellence 2018 Units 3 & 4 Mathematical Methods – Written Examination 2 Page 18

QUESTION 4 (13 marks)

Let
$$g:[-14,1] \to R, g(x) = -3\log_e(2-x) + 2$$

a. (i)
$$g'(x) = -\frac{3}{x-2}$$
 1A

Solve g'(x) = 0 for stationary point(s) gives no solution.

(ii) From the graph the maximum point is at the endpoint at x = 1.

1**A**

1A

Endpoints = $(-14, -12\log_e(2)+2)$ and (1, 2)

x-intercept
$$\left(-e^{\frac{2}{3}}+2,0\right)$$

y-intercept $\left(0,-3\log_{e}(2)+2\right)$

2A

(ii) Endpoints = $(-14, -12\log_e(2)+2)$ and (1, 2)

Gradient =
$$\frac{-12\log_e(2) + 2 - 2}{-14 - 1} = \frac{-12\log_e(2)}{-15} = \frac{4\log_e(2)}{5}$$

Equation of line:
$$y-2 = \frac{4\log_e(2)}{5}(x-1)$$

$$y = \frac{4\log_e(2)}{5}x - \frac{4\log_e(2)}{5} + 2$$
 1A

c.
$$Area = \int_{-14}^{1} \left(\frac{4\log_e(2)}{5} x - \frac{4\log_e(2)}{5} + 2 \right) - \left(-3\log_e(2-x) + 2 \right) dx$$

 $Area = \int_{-14}^{1} \left(\frac{4\log_e(2)}{5} x - \frac{4\log_e(2)}{5} + 3\log_e(2-x) \right) dx$ 1M
 $Area = 25.7009 = 25.7 \text{ units}^2$ 1A

d. (i) The coordinates on the g(x) graph that illustrate the mean value theorem.

These connect at the points $M(-14, -12\log_e(2)+2)$ and N(1,2)

From **part b (ii)** gradient MN straight = $\frac{4 \log_e(2)}{5}$ 1M Equation MN curved: $g(x) = -3\log_e(2-x) + 2$ $\therefore g'(x) = -\frac{3}{x-2}$ Equate $\frac{4\log_e(2)}{5} = -\frac{3}{x-2}$ 1M to get $x = \frac{-15}{4\ln(2)} + 2$ Coordinates on MN curved = $\left(\frac{-15}{4\ln(2)} + 2, -3\ln\left(\frac{15}{4\ln(2)} + 2\right)\right)$ **1A** ¢. Edit Action Interactive fdx Simp fdx de. define $g(x) = -3\ln(2-x)+2$ done solve $\left(\frac{d}{dx}(g(x)) = \frac{4 \cdot \ln(2)}{5}, x\right)$ $\left\{x = \frac{-15}{4 \cdot \ln(2)} + 2\right\}$

(ii) At
$$x = \frac{-15}{4\ln(2)} + 2$$

Equation of tangent: y = 0.554x - 1.174

$$\tan \operatorname{Line}\left(g(x), x, -\frac{15}{4\ln(2)}+2\right)$$

0.5545177444.x-1.173841771

