MATHEMATICAL METHODS

Units 3 & 4 – Written examination 2

2018 Trial Examination

SOLUTIONS

SECTION A

Question 1

Answer: B

Explanation:

period = $\frac{2\pi}{n}$ and range = [1-2, 1+2]

Question 2

Answer: A

Explanation:

Define
$$f(x)=x^2-1$$

Define $g(x)=\frac{3-x}{4}$

Done

 $g(f(2))$

0

Question 3

Answer: C

$$RB + BR + RR = \left(\frac{5}{9} \times \frac{4}{8}\right) + \left(\frac{4}{9} \times \frac{5}{8}\right) + \left(\frac{5}{9} \times \frac{4}{8}\right)$$

Question 4

Answer: E

Explanation:

The interval where the tangents to the graph have negative gradients.

Question 5

Answer: D

Explanation:

$$y + 5 = b^{a - \frac{x}{2}} \to \log_b(y + 5) = a - \frac{x}{2} \to \frac{x}{2} = a - \log_b(y + 5) \to x = 2(a - \log_b(y + 5))$$

Question 6

Answer: A

Explanation:

Define
$$f(x)=5 \cdot x+x^3$$
Done

Solve $\left(\frac{f(a)-f(0)}{a-0}=8,a\right)$
 $a=-\sqrt{3} \text{ or } a=\sqrt{3}$

Question 7

Answer: E

$$x' = -x, \ y' = \frac{1}{4}y \to x = -x', \ y = 4y'$$
$$4y' = \sin\left(3\left(-x' - \frac{\pi}{2}\right)\right) \to y = -\frac{1}{4}\sin\left(3x + \frac{\pi}{2}\right)$$

Question 8

Answer: B

Explanation:

solve
$$\left(\cos(2 \cdot x) = \frac{1}{2}, x\right) | -\pi \le x \le \pi$$

$$x = \frac{-5 \cdot \pi}{6} \text{ or } x = \frac{-\pi}{6} \text{ or } x = \frac{\pi}{6} \text{ or } x = \frac{5 \cdot \pi}{6}$$

$$\frac{-5 \cdot \pi}{6} + \frac{-\pi}{6} + \frac{\pi}{6} + \frac{5 \cdot \pi}{6}$$

Ouestion 9

Answer: C

Explanation:

Define
$$h(x) = \frac{1}{(x-1)^2}$$

$$h(x) \cdot h(-x) = h(x^2)$$
Thus

$$h(x) \cdot h(-x) = h(x^2)$$
 true

Question 10

Answer: A

Explanation:

$$Var(X) = E(X^2) - (E(X))^2 = 4 - 5p - (2 - 3p)^2$$

Question 11

Answer: E

Solve
$$20p = 2\sqrt{20p(1-p)}$$
 on CAS

Question 12

Answer: D

Explanation:

The area is below the x-axis between -2 and $\frac{1}{3}$, hence the negative sign.

Question 13

Answer: A

Explanation:

$$\operatorname{solve}\left(\int_{0}^{\pi} (k \cdot \sin(x)) dx = 1, k\right) |0 < k < 2 \qquad k = \frac{1}{2}$$

Question 14

Answer: B

Explanation:

Solve f'(x) = 0 for each option

Question 15

Answer: E

solve
$$\left((1-p)^4 = \frac{1}{625}p\right)$$
 $p = \frac{4}{5} \text{ or } p = \frac{6}{5}$

$$binomCdf\left(4, \frac{4}{5}, 3, 4\right)$$
 0.8192

Question 16

Answer: C

Explanation:

$$solve(4+4\cdot(2\cdot p-1)\cdot(1-p)\geq 0,p) \qquad 0\leq p\leq \frac{3}{2}$$

Question 17

Answer: C

Explanation:

Question 18

Answer: B

Explanation:

Since 6 is not included in the domain it cannot yield the maximum value.

Question 19

Answer: E

Explanation:

solve
$$\left(\frac{m}{2} \neq \frac{4}{m-2}, m\right)$$
 $m \neq -2 \text{ and } m \neq 4$

Question 20

Answer: A

$$\frac{1}{4-0} \cdot \int_{0}^{4} (x \cdot \sqrt{x}) dx \qquad \frac{16}{5}$$

SECTION B

Question 1

a.
$$\left(\frac{-\sqrt{6}}{6}, \frac{-\sqrt{6}}{9}\right)$$
 and $\left(\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{9}\right)$

Define
$$f(x)=x-2 \cdot x^3$$
Done
$$solve\left(\frac{d}{d}(f(x))=0 \cdot x\right)$$

$$\sqrt{\frac{-\sqrt{6}}{6}}$$
 $\frac{-\sqrt{6}}{9}$

$$\frac{\sqrt{6}}{6}$$
 $\frac{\sqrt{6}}{9}$

3 marks

b.

i.
$$(-2,14)$$
 and $(2,-14)$
 $y = -7x + k \rightarrow 14 = 14 + k \rightarrow k = 0$
Equation : $7x + y = 0$

2 marks

ii.
$$20\sqrt{2}$$
 units

$$\sqrt{28^2+4^2}$$
 20. $\sqrt{2}$

1 mark

c.

i. The 2 points will be
$$C(-2, 8k - 2)$$
 and $D(2, 2 - 8k)$
 $y = (1 - 4k)x + c \rightarrow 8k - 2 = -2(1 - 4k) + c \rightarrow c = 0$
Equation: $y = (1 - 4k)x$

2 marks

ii.
$$-1 = 5(1 - 4k) \rightarrow k = \frac{3}{10}$$

1 mark

d.

i.
$$-a = a - ka^3$$
$$-2 = -ka^2$$
$$a = \sqrt{\frac{2}{k}}$$

2 marks

ii.

$$\int_{-\sqrt{\frac{2}{k}}}^{0} (-x-x+k\cdot x^3) dx + \int_{0}^{\sqrt{\frac{2}{k}}} (x-k\cdot x^3+x) dx$$

$$\frac{2}{k}$$

2 marks

Question 2

a.
$$\int_0^2 \frac{ct}{2} dt + \int_2^6 \frac{c}{4} (10 - t) dt = 1$$
$$\left[\frac{ct^2}{4} \right]_0^2 + \left[\frac{c}{4} \left(10t - \frac{t^2}{2} \right) \right]_2^6 = 1$$
$$c + \frac{c}{4} (60 - 18 - 20 + 2) = 1 \to c = \frac{1}{7}$$

3 marks

b.
$$\int_{1}^{2} \frac{t}{14} dt + \int_{2}^{5} \frac{(10-t)}{28} dt$$
$$= \left[\frac{t^{2}}{28} \right]_{1}^{2} + \left[\frac{20t - t^{2}}{56} \right]_{2}^{5}$$
$$= \frac{3}{28} + \frac{39}{56} = \frac{45}{56}$$

2 marks

c. This is a conditional probability.

$$\frac{\Pr(T \le 1 \cap T \le 5)}{\Pr(T \le 5)} = \frac{\Pr(T \le 1)}{\Pr(T \le 5)} = \frac{\Pr(T \le 1)}{\Pr(T \le 1) + \Pr(1 \le T \le 5)} = \frac{\frac{1}{28}}{\frac{1}{28} + \frac{45}{56}} = \frac{2}{47}$$

2 marks

d.
$$\Pr(0 \le T \le 2) = \frac{1}{7}$$

$$\Pr(2 \le T \le a) = \frac{1}{7}$$

$$\operatorname{solve} \left(\int_{2}^{a} \frac{1}{7} \cdot (10-t) dt = \frac{1}{7}, a \right)$$

$$a = 2.51668522645 \text{ or } a = 17.4833147735$$

a = 2.5167

3 marks

e.

i.
$$Bi\left(7, \frac{3}{7}\right)$$

 $Pr(T \ge 4) = binomcdf\left(7, \frac{3}{7}, 4\right) = 0.8734$

2 marks

ii.
$$\frac{3}{7} \times \frac{3}{7} \times \frac{3}{7} = \frac{27}{343}$$

1 mark

f.
$$\Pr(T \ge 13) = 0.2312 \to \Pr\left(Z \ge \frac{2}{b}\right) = 0.2312$$

 $\frac{2}{b} = \text{invorm}(1 - 0.2312, 0, 1) \to \frac{2}{b} = 0.73490 \to b = 2.72 \text{ days}$

3 marks

Ouestion 3

a.
$$a = 3$$
, $b = -1$, $c = -3$

Dialtion by a factor of 3 from the x-axis, horizontal translation 1 unit to the left and vertical translation of 3 units down.

1 mark for each

b.
$$x = 3 \times 2^{y+1} - 3 \to \frac{x+3}{3} = 2^{y+1} \to y + 1 = \log_2\left(\frac{x+3}{3}\right) \to y = \log_2\left(\frac{x+3}{3}\right) - 1$$

 $f^{-1}(x) = \log_2\left(\frac{x+3}{3}\right) - 1$, Domain: $(-3, \infty)$

2 marks

© TSSM 2018

c. 2.60 square units

$$\int_{-1}^{0} \left(3 \cdot 2^{x+1} - 3 - \log_2\left(\frac{x+3}{3}\right) + 1\right) dx$$
2.60085516211

2 marks

d.

i. Range of $f:(-3,\infty)$, Domain of $g:R\setminus\{0\}$ R_f is not part of D_g , hence g(f(x)) is not defined

2 marks

ii.
$$f(g(x)) = f(\frac{1}{x}) = 3 \times 2^{\frac{1}{x}+1} - 3$$

Domain of $f(g(x))$: $R \setminus \{0\}$

2 marks

e.

i. tangentline(
$$f(x)$$
, x , -3)
y = 0.52x - 0.69

2 marks

ii.
$$tan(\theta) = 0.52 \rightarrow \theta = 27.5^{\circ}$$

1 mark

iii.
$$k = 1.837$$

tangentLine
$$(3 \cdot 2^{x+1} - 3, x, -3)$$

0.5199 \cdot x - 0.6904

tangentLine
$$(3 \cdot 2^{x+1} - 3, x, k)$$

4.159 \cdot (2.) $k \cdot x - 4.159 \cdot ((k-1.443) \cdot (2.)^k + 0.7^k$

solve
$$\left(-0.39 = 4.1588830833597 \cdot (2.)^{k} \cdot 0.5^{k}\right)$$

 $k = -2.997 \text{ or } k = 1.837$

Substitute (0.57, -0.39) into the tangent line at x = k obtained on CAS

3 marks

Question 4

a. Max = 45 + 30 = 75 m, Min = 45 - 30 = 15 m

1 mark for each

b.

i. Period, $T = \frac{2\pi}{\frac{\pi}{3}} = 6$ minutes Ride finishes in 12 minutes

2 marks

ii. After 3 minutes and 9 minutes

Define
$$h(t)=45-30 \cdot \cos\left(\frac{\pi \cdot t}{3}\right)$$

Done

$$solve(h(t)=75,t)|0 \le t \le 12$$
 $t=3 \text{ or } t=9$

2 marks

с.

$$\frac{d}{dt}(h(t)) \qquad 10 \cdot \pi \cdot \sin\left(\frac{\pi \cdot t}{3}\right)$$

1 mark

ii.
$$t = 3, 6, 9$$

$$solve\left(\frac{d}{dt}(h(t)) = 0, t\right) | 0 \le t \le 12$$

$$t=0 \text{ or } t=3 \text{ or } t=6 \text{ or } t=9 \text{ or } t=12$$

2 marks

d.
$$\tan^{-1}\left(\frac{75}{350}\right) = 12.09^{\circ}$$

1 mark

$$e. \quad CF = \frac{75}{\tan \alpha}$$

1 mark

f.
$$CF = \frac{75}{\tan(26.09)} = 153.16 \text{ m}$$

2 marks