

Victorian Certificate of Education 2018

SUPERVISOR TO ATTACH PROCESSING LABEL HERE	

				Letter
STUDENT NUMBER				

MATHEMATICAL METHODS

Written examination 1

Wednesday 7 November 2018

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 14 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1 (3 marks)

a. If $y = (-3x^3 + x^2 - 64)^3$, find $\frac{dy}{dx}$.

b. Let $f(x) = \frac{e^x}{\cos(x)}$. Evaluate $f'(\pi)$.

2 marks

1 mark

Question 2 (3 marks)

The derivative with respect to x of the function $f:(1,\infty)\to R$ has the rule $f'(x)=\frac{1}{2}-\frac{1}{(2x-2)}$.

Given that f(2) = 0, find f(x) in terms of x.

	_

Question 3 (5 marks)

Let $f: [0, 2\pi] \to R$, $f(x) = 2\cos(x) + 1$.

a. Solve the equation $2\cos(x) + 1 = 0$ for $0 \le x \le 2\pi$.

b. Sketch the graph of the function *f* on the axes below. Label the endpoints and local minimum point with their coordinates.

3 marks

Question 4 (2 marks)

Let X be a normally distributed random variable with a mean of 6 and a variance of 4. Let Z be a random variable with the standard normal distribution.

a.	Find $Pr(X > 6)$.	1 mark
b.	Find b such that $Pr(X > 7) = Pr(Z < b)$.	1 mark
	nestion 5 (3 marks)	
Let Stat	t $f: (2, \infty) \to R$, where $f(x) = \frac{1}{(x-2)^2}$. In the rule and domain of f^{-1} .	

Question 6 (4 marks)

Two boxes each contain four stones that differ only in colour.

Box 1 contains four black stones.

Box 2 contains two black stones and two white stones.

A box is chosen randomly and one stone is drawn randomly from it.

Each box is equally likely to be chosen, as is each stone.

What is the probability that the randomly drawn stone is black?	2 mark
	_
It is not known from which box the stone has been drawn.	
Given that the stone that is drawn is black, what is the probability that it was drawn from	
Box 1?	2 mark
	_

Question 7 (5 marks)

Let P be a point on the straight line y = 2x - 4 such that the length of OP, the line segment from the origin O to P, is a minimum.

	3 ma
Find the distance <i>OP</i> . Express your answer in the form $\frac{a\sqrt{b}}{b}$, where a and b are positive integers.	ve 2 ma

CONTINUES OVER PAGE

Question 8 (7 marks)

Let $f: R \to R$, $f(x) = x^2 e^{kx}$, where k is a positive real constant.

a. Show that $f'(x) = xe^{kx}(kx + 2)$.

b. Find the value of k for which the graphs of y = f(x) and y = f'(x) have exactly one point of intersection.

2 marks

1 mark

Let $g(x) = -\frac{2xe^{kx}}{k}$. The diagram below shows sections of the graphs of f and g for $x \ge 0$.

Let *A* be the area of the region bounded by the curves y = f(x), y = g(x) and the line x = 2.

d.

c.	Write down a definite integral that gives the value of A .	1 mark
		_

	_
Using your result from part a. , or otherwise, find the value of k such that $A = \frac{16}{k}$.	3 marks
	_
	_
	_

Question 9 (8 marks)

Consider a part of the graph of $y = x \sin(x)$, as shown below.

a. i. Given that $\int (x \sin(x)) dx = \sin(x) - x \cos(x) + c$, evaluate $\int_{n\pi}^{(n+1)\pi} (x \sin(x)) dx$ when *n* is a positive **even** integer or 0. Give your answer in simplest form.

2 marks

ii.	Given that	$(x \sin(x))dx = \sin(x) - x \cos(x) + c$, evaluate	$\int_{n\pi}^{(n+1)\pi} \left(x \right)^{-n}$	$c \sin(x) dx$	when n	ı is
	a positive o	dd integer Give vour answer in simplest form				

1 mark

b.	Find the equation of the tangent to $y = x \sin(x)$ at the point $\left(-\frac{5\pi}{2}, \frac{5\pi}{2}\right)$.	2 marks
c.	The translation T maps the graph of $y = x \sin(x)$ onto the graph of $y = (3\pi - x) \sin(x)$, where	
	$T: \mathbb{R}^2 \to \mathbb{R}^2, \ T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ 0 \end{bmatrix}$	
	and a is a real constant.	
	State the value of <i>a</i> .	1 mark

d. Let $f: [0, 3\pi] \to R$, $f(x) = (3\pi - x) \sin(x)$ and $g: [0, 3\pi] \to R$, $g(x) = (x - 3\pi) \sin(x)$. The line l_1 is the tangent to the graph of f at the point $\left(\frac{\pi}{2}, \frac{5\pi}{2}\right)$ and the line l_2 is the tangent to the graph of g at $\left(\frac{\pi}{2}, -\frac{5\pi}{2}\right)$, as shown in the diagram below.

Find the total area of the shaded regions shown in the diagram above.

2 marks

Victorian Certificate of Education 2018

MATHEMATICAL METHODS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.

A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$	
$\frac{d}{dx}\Big((ax+b)^n\Big) = an\Big(ax+b\Big)^{n-1}$		$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$	
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$	
$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$	
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$	
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a \sec^2(ax)$			
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$		

Probability

$\Pr(A) = 1 - \Pr(A')$		$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$	
$Pr(A B) = \frac{Pr(A \cap B)}{Pr(B)}$			
mean	$\mu = E(X)$	variance	$var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

Prob	ability distribution	Mean	Variance
discrete	$\Pr(X=x) = p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x)dx$	$\mu = \int_{-\infty}^{\infty} x \ f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p}+z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$