The Mathematical Association of Victoria

Trial Examination 2019 MATHEMATICAL METHODS

Trial Written Examination 2 - SOLUTIONS

SECTION A: Multiple Choice

Question	Answer	Question	Answer
1	Е	11	D
2	D	12	А
3	С	13	Е
4	А	14	С
5	C	15	С
6	Е	16	D
7	В	17	А
8	Е	18	С
9	В	19	Е
10	С	20	Е

Question 1

Answer E

$$y = -3\cos\left(2\pi x - \frac{\pi}{2}\right)$$

period = $\frac{2\pi}{2\pi} = 1$

Amplitude = 3

Question 2

Answer D

 $f(x) = \sin(x)$ for $x \in [0, 2\pi]$ and $g(x) = (x+1)^2$ for its maximal domain which is *R*. g(f(x)) exists, with the domain of g(f(x)) equalling the domain of *f*, which is $[0, 2\pi]$.

Question 3

Solve $2\sin(2x) = 1$ for x.

Answer C

$$\sin(2x) = \frac{1}{2}$$
$$2x = \frac{\pi}{6}, \frac{5\pi}{6} \dots$$

$$x = \frac{\pi}{12}, \frac{5\pi}{12}...$$

General solution

The period is π .

$$x = \frac{\pi}{12} + n\pi, n \in \mathbb{Z}$$

or

$$x = \frac{5\pi}{12} + n\pi, n \in \mathbb{Z}$$

Question 4

Answer A

 $f(x) = 3x^4 - 60x^3 + 450x^2 - 1500x + k + 1875$

The graph of $f_1(x) = 3x^4 - 60x^3 + 450x^2 - 1500x + 1875$ has only one turning point. The value of k will translate this graph up and down, giving 0, 1 or 2 x-intercepts.

Question 5

Answer C

$$f:\left[\frac{3}{2},\infty\right] \to R, f(x) = -\sqrt{2x-3} + 4$$

Let $y = -\sqrt{2x - 3} + 4$.

Inverse: swap *x* and *y* and solve for *y*.

$$x = -\sqrt{2y - 3} + 4$$

$$y = \frac{1}{2} \left(x - 4 \right)^2 + \frac{3}{2}$$

The range of f is $(-\infty, 4]$. The domain of the inverse is $(-\infty, 4]$.

$$f^{-1}: (-\infty, 4] \rightarrow R, f^{-1}(x) = \frac{1}{2}(x-4)^2 + \frac{3}{2}$$

C Edit Action Interactive

$$f^{-1}: (-\infty, 4] \rightarrow R, f^{-1}(x) = \frac{1}{2}(x-4)^2 + \frac{3}{2}$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3 + 4$$

$$y = -\sqrt{2} \cdot x - 3$$

Question 6

Answer E

 $y = e^x$ is $y_T = 2e^{-2x} + 3$

$y_1 = 2e^x$	a dilation from the <i>x</i> -axis by a factor of 2
$y_2 = 2e^{2x}$	followed by a dilation from the <i>y</i> -axis by a factor of 0.5
$y_3 = 2e^{-2x}$	then a reflection in the y-axis and
$y_T = 2e^{-2x} + 3$	a translation in the positive direction of the y-axis by 3 units.

Question 7 Answer B

The graph of $y = -\log_e(2x^2 - x)$ has two vertical asymptotes, x = 0 and $x = \frac{1}{2}$.

Question 8 Answer E $l:(-\infty,1) \rightarrow R, \ l(x) = (x+1)(x-2)^2$ is a many to 1 function. So the inverse is not a function.

Answer B

$$T: R^{2} \rightarrow R^{2}, T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -1 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$
$$x' = -x, \ x = -x'$$
$$y' = 0.5y + 2, \ y = 2y' - 4$$
$$y = \frac{3}{x}$$
$$2y' - 4 = -\frac{3}{x'}$$
$$y' = -\frac{3}{2x'} + 2$$

The equation of the image is

$$y = -\frac{3}{2x} + 2$$

OR

Question 10

$$y_{1} = -\frac{3}{x}$$
 reflection in the *y*-axis

$$y_{2} = -\frac{3}{2x}$$
 dilation by a factor of 0.5 from the *x*-axis

$$y_{3} = -\frac{3}{2x} + 2$$
 translation of 2 units up

Answer C

$$f(x+2y) = f(x) f(2y)$$

$$f(x) = e^{2x}$$

$$LHS = f(x+2y) = e^{2(x+2y)}$$

$$= e^{2x} \times e^{4y}$$

$$= f(x) f(2y) = RHS$$

$$\textcircled{b} \quad f(x) = e^{2x}$$

$$define \quad f(x) = e^{2x}$$

© The Mathematical Association of Victoria, 2019

$$f(x) = e^{x} \sin(x) \text{ over the interval } \begin{bmatrix} 0, 2\pi \end{bmatrix}$$

Average value
$$= \frac{1}{2\pi} \int_{0}^{2\pi} \left(e^{x} \sin(x) dx \right)$$
$$= -\frac{e^{2\pi} - 1}{4\pi}$$
$$\boxed{1.24 \ 1.25 \ 1.26} * \text{MAV2019...am2} \text{ RAD} \text{ (i)}$$
$$\boxed{\frac{1}{2 \cdot \pi} \int_{0}^{2 \cdot \pi} \left(e^{x} \cdot \sin(x) \right) dx} \qquad \frac{-\left(e^{2 \cdot \pi} - 1 \right)}{4 \cdot \pi}$$

Answer A

Answer D

The average rate of change of
$$y = \frac{1}{2}x + \frac{1}{2x}$$
 from $x = \frac{1}{2}$ to $x = \frac{3}{2}$.

Let
$$f(x) = \frac{1}{2}x + \frac{1}{2x}$$
.

Average rate of change =
$$\frac{f\left(\frac{3}{2}\right) - f\left(\frac{1}{2}\right)}{\frac{3}{2} - \frac{1}{2}} = -\frac{1}{6}$$

Question 13

 $f:\left(\frac{3}{2},\infty\right) \to R, \ f(x) = -\sqrt{2x-3}$ is a strictly decreasing function over the given domain.

Question 14 Answer C a = 5t + 3 $v = \int (5t+3)dt$ $=\frac{5t^2}{2}+3t+c, c=0$ $=\frac{5t^2}{2}+3t$ $x = \int \left(\frac{5t^2}{2} + 3t\right) dt$ $=\frac{5t^3}{6}+\frac{3t^2}{2}+d$, when t=0, x=2 $x = \frac{5t^3}{6} + \frac{3t^2}{2} + 2$ 1.25 1.26 1.27 > *MAV2019... am2 🗢 RAD 🚺 $\int (5 \cdot t + 3) dt$ 5. ť 2 +3 · t $3 \cdot t^2$ $5 \cdot t^2$ 2 solve $\left(2=\frac{5\cdot t^3}{6}+\frac{3\cdot t^2}{2}+c,c\right)|t=0$ c=2

Answer C

Let $f(x) = x^3$

Area of the rectangles = 0.2(f(1) + f(1.2) + f(1.4) + f(1.6) + f(1.8)) = 3.08

Actual area =
$$\int_{1}^{2} f(x) dx = \frac{15}{4}$$

 $\frac{3.08}{3.75} \times 100\% \approx 82.13\%$

Question 16

Answer D

x	0	1	2	3
$\Pr(X=x)$	0.2	а	b	С
0.2 + a + b + c	$r = 1 \dots (1)$			

a + 2b + 3c = 1.9...(2)

$$a + 4b + 9c - 1.9^2 = 1.29 \dots (3)$$

$$a = 0.1, b = 0.3, c = 0.4$$

Answer A

np = 20, np(1-p) = 10

 $n = 40, p = \frac{1}{2}$

 $\Pr(X=15 \mid X<18) = \frac{\Pr(X=15)}{\Pr(0 \le X \le 17)} = 0.170 \text{ correct to three decimal places}$

Answer C

1.26 1.27 1.28 *MAV20)19…am2 ▽	RAD 🚺 🗙
solve $(n \cdot p = 20 \text{ and } n \cdot p \cdot (1)$	p)=10, <i>n</i> ,p)	<
	<i>n</i> =40 an	$d p = \frac{1}{2}$
binomPdf $\left(40, \frac{1}{2}, 15\right)$	0.036584	738205
$\frac{0.036584738205424}{\text{binomCdf}\left(40, \frac{1}{2}, 0, 17\right)}$	0.170323	775008

Question 18

 $\Pr(A) = 0.7$ and $\Pr(A' \cap B') = 0.2$

For independent events $\Pr(A \cap B) = \Pr(A) \times \Pr(B)$

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A) \times \Pr(B)$$

Solve $0.8 = 0.7 + \Pr(B) - 0.7 \times \Pr(B)$ for $\Pr(B)$

$$\Pr(A \cap B) = \frac{7}{10} \times \frac{1}{3} = \frac{7}{30}$$

< 1.32 1.33 1.34 ► *MAV2019am2	2 🤝 🛛 RAD 🚺 🗙
$solve(0.8=0.7+x-0.7\cdot x,x)$	
x=0.33	33333333333
$\frac{7}{10} \cdot \frac{1}{3}$	7 30

2

Question 19

Answer E

$$f(x) = \frac{1}{4\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-3}{4}\right)^2}, \quad x \in R$$
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, \quad x \in R$$

mean is 3, variance is 16

Question 20

Answer E

Solve
$$\int_{0}^{m} (e^{x+2}) dx = \frac{1}{2}$$
 for m

SECTION B

Question 1

a. Total Surface Area = $4 \times \frac{1}{2}xs + x^2$ with TSA given as 1100 cm²

 $4 \times \frac{1}{2}xs + x^{2} = 1100$ $2xs + x^{2} = 1100$ Giving $s = \frac{1100 - x^{2}}{2x}$ as required **1M Show that**

b. Right angled triangle formed by vertical height, h, half the side length, x and slant height, s.

 $\left(\frac{x}{2}\right)^{2} + h^{2} = s^{2}$ Giving $h^{2} = s^{2} - \frac{x^{2}}{4}$ From $s = \frac{1100 - x^{2}}{2x}$ we have $h^{2} = \left(\frac{1100 - x^{2}}{2x}\right)^{2} - \frac{x^{2}}{4}$ Positive vertical height, $h = \sqrt{\left(\frac{1100 - x^{2}}{2x}\right)^{2} - \frac{x^{2}}{4}}$ Simplified $h = 5\sqrt{\frac{-22(x^{2} - 550)}{x^{2}}} = \frac{5\sqrt{-22(x^{2} - 550)}}{x}$ (accept different forms) 1A

$$\sqrt{(\frac{1100-x^2}{2x})^2 - \frac{x^2}{4}} \\ 5 \cdot \sqrt{\frac{-22 \cdot (x^2 - 550)}{x^2}}$$

c. Volume of square based pyramid = $\frac{1}{3}x^2h$

giving
$$V = \frac{1}{3}x^2 \times 5\sqrt{\frac{-22(x^2 - 550)}{x^2}}$$

for
$$x > 0$$
, $V = \frac{5x\sqrt{-22(x^2 - 550)}}{3}$

1M Show that

d. For maximum volume, $\frac{dV}{dx} = 0$

gives
$$x = \pm 5\sqrt{11}$$

from graph of V against x, and x > 0, maximum volume occurs at $x = 5\sqrt{11}$

e. Maximum volume,
$$V = \frac{1375\sqrt{22}}{3}$$
 1A
solve $\left(\frac{d}{dx}(V(x)) = 0, x\right)$
 $\{x = -5 \cdot \sqrt{11}, x = 5 \cdot \sqrt{11}\}$
 $V(5 \cdot \sqrt{11})$
 $\frac{1375 \cdot \sqrt{22}}{3}$

© The Mathematical Association of Victoria, 2019

1A

f. Given
$$\frac{dV}{dt} = 0.2t$$

 $V = \int (0.2t) dt = 0.1t^2 + c$
 $t = 0, V = 0, c = 0$
 $V = 0.1t^2$ **1M**

Equating $0.1t^2 = \frac{1375\sqrt{22}}{3}$ for full volume

Gives t = 146.62 minutes correct to two decimal places **1A**

solve
$$\left(0.1 \cdot t^2 = \frac{1375 \cdot \sqrt{22}}{3}, t\right)$$

 $\left[3.6.6210725, t=146.6210725\right]$

g. Average volume
$$=\frac{1}{146.621-0}\int_{0}^{146.621} (0.1t^2)dt$$
 1M

Average volume = 716.6 cm^3 correct to one decimal place **1A**

$$\frac{1}{146.621} \int_{0}^{146.621} 0.1 \cdot t^{2} dt$$
716.590588

h. Using similar triangles
$$\frac{w}{d} = \frac{x}{h}$$
 1M

$$\begin{array}{c}
x\\
w\\
w\\
d\\
d\\
\end{array}$$
With side length $x = 5\sqrt{11}$, we have $h = 5\sqrt{\frac{-22\left(\left(5\sqrt{11}\right)^2 - 550\right)}{\left(5\sqrt{11}\right)^2}} = 5\sqrt{22}$ 1A

$$\frac{w}{d} = \frac{5\sqrt{11}}{5\sqrt{22}}, \ w = \frac{d}{\sqrt{2}}$$
 1M

Volume of water $=\frac{1}{3}w^2d$

Giving
$$V_w = \frac{1}{3}w^2 d = \frac{1}{3}\left(\frac{d}{\sqrt{2}}\right)^2 d$$

Giving $V_w = \frac{d^3}{6}$ with domain $0 \le d \le 5\sqrt{22}$ 1A

i. Let
$$\frac{d^3}{6} = \frac{1}{2} \times \frac{1375\sqrt{22}}{3}$$

giving d = 18.6 cm, correct to one decimal place 1A

solve
$$\left(\frac{d^3}{6} = \frac{1}{2} \cdot \frac{1375 \cdot \sqrt{22}}{3}, d\right)$$

{d=18.61392728}

© The Mathematical Association of Victoria, 2019

$$h: [0, 60] \rightarrow R, h(t) = \frac{1}{2} \cos\left(-\frac{4\pi}{3}\left(t - \frac{1}{2}\right)\right) + 2$$

a. $h(0) = \frac{7}{4}$

Initial height 1.75 metres 1A

b. period
$$=\frac{2\pi}{\frac{4\pi}{3}} = \frac{3}{2}$$
 1A
range $= \left[-\frac{1}{2} + 2, \frac{1}{2} + 2\right] = [1.5, 2.5]$

1A

c. 1A 3 correct, 2A all correct

dilate from *t*-axis by factor of $\frac{1}{2}$ •

• dilate from *h*-axis by factor of
$$\frac{3}{4\pi}$$

- reflect in the *h*-axis •
- translate in positive direction of *t*-axis by $\frac{1}{2}$ units •
- translate in positive direction of *h*-axis by 2 units •

d.
$$T\left(\begin{bmatrix} t \\ h \end{bmatrix}\right) = \begin{bmatrix} b & 0 \\ 0 & c \end{bmatrix} \begin{bmatrix} t \\ h \end{bmatrix}.$$

Dilated by a factor of
$$\frac{2}{3}$$
 from the *t*-axis gives $b = 1$, $c = \frac{2}{3}$. 1A

e.
$$h_1(t) = \frac{2}{3} \left(\frac{1}{2} \cos\left(-\frac{4\pi}{3} \left(t - \frac{1}{2} \right) \right) + 2 \right)$$

 $h_1(t) = \frac{1}{3} \cos\left(-\frac{4\pi}{3} \left(t - \frac{1}{2} \right) \right) + \frac{4}{3}$ 1A

$$\mathbf{f.} \quad T\left(\begin{bmatrix}t\\h\end{bmatrix}\right) = \begin{bmatrix}-\frac{3}{4\pi} & 0\\0 & \frac{1}{3}\end{bmatrix}\begin{bmatrix}t\\h\end{bmatrix} + \begin{bmatrix}\frac{1}{2}\\\frac{4}{3}\end{bmatrix}$$

$$\mathbf{1A}$$

g. Solve $\frac{d}{dt}(h_2'(t)) = 0$ or observe from the graph of the derivative

Solve $\frac{d}{dt}(h_2'(t)) = 0$ and substitute a suitable constant

1M

First at a maximum at
$$t = \frac{1}{8}$$
 minutes 1A

OR

Sketch derivative graph 1M

First at a maximum at
$$t = \frac{1}{8}$$
 minutes 1A

h. one wave cycle is 1.5 minutes

Solve
$$h_2(t) > 2.1, t \in [0, 1.5]$$
 1M

A graph helps to visualise the situation

proportion of one wave cycle = 0.42 correct to two decimal places 1A

a. No, only the first cage was selected. 1A

b. Give every mouse a number from 1 to 90 and generate 12 numbers using a suitable random number generator. **1A**

OR

Randomly select a tub and then randomly select 4 mice from each tub (stratified sampling).

c.
$$\frac{\binom{10}{2}\binom{20}{2}}{\binom{30}{4}}$$
 1M
= $\frac{190}{609}$ 1A
1.1 *MAV Exten...019 > RAD (
nCr(10,2) nCr(20,2) 190
nCr(30,4) 609
OR
 $6 \times \frac{10}{20} \times \frac{9}{20} \times \frac{20}{28} \times \frac{19}{27}$ 1M

$$=\frac{190}{609}$$

d. Solve
$$\frac{18 - \mu}{\sigma} = -0.841...$$
 and $\frac{24 - \mu}{\sigma} = 0.524...$ **1M**

$$\mu = 21.7$$
 correct to one decimal place 1A

$$\sigma = 4.4$$
 correct to one decimal place 1A

OR

e.
$$E(\hat{P}) = p = 0.8$$
 1A

Standard deviation of $\hat{P} = \sqrt{\frac{p(1-p)}{n}}$ where p = 0.8, n = 100

$$=\sqrt{\frac{0.8 \times 0.2}{100}} = 0.04$$
 1A

f. Let
$$X \sim \text{Bi}(100, 0.8)$$

$$\Pr\left(\hat{P} > p\right) = \Pr\left(\hat{P} > 0.8\right)$$
$$= \Pr\left(X > 80\right) \qquad 1M$$

= 0.460 correct to three decimal places

1A

(III)

OnePropZInt

Lower	0.7271445
Upper	0.8728555
Ŷ	0.8
n	200
<< Back] Help
OnePropZInt	(11)

h. $0.99 \times 300 = 297$ **1A**

i. Solve $2.575\sqrt{\frac{0.8 \times 0.2}{n}}$	$\frac{2}{2} < 0.02$ 1M
n = 2654	1A
1.5 1.6 1.7 > *MAV E	xten019 🕁 🛛 RAD 🚺 🔀
invNorm(0.995,0,1)	2.575829303
solve(2.5758293030016	$ \left(\frac{0.8 \cdot 0.2}{n} < 0.02, n\right) $ n>2653.95863928

Note: $Z \sim N(0,1)$, $Pr(Z < z_{0.99}) = 0.995$, $z_{0.99} = 2.575$...

Question 4
a. Solve
$$\frac{d}{dx}(l_b(x)) = 0$$
 for x.

$$x = \frac{-b \pm \sqrt{b^2 - 9}}{3}$$
1M

For two solutions $b^2 - 9 > 0$.

$$b < -3 \text{ or } b > 3$$
 1A

I.6 1.7 1.8 MAV Exten..019 → PAD (×
 Define
$$I(x) = e^{x^3 + b \cdot x^2 + 3 \cdot x + 1}$$

 Define $I(x) = e^{x^3 + b \cdot x^2 + 3 \cdot x + 1}$

 Solve $\left(\frac{d}{dx}\left(e^{x^3 + b \cdot x^2 + 3 \cdot x + 1}\right) = 0, x\right)$
 $x = \frac{\sqrt{b^2 - 9} - b}{3}$ or $x = \frac{-(\sqrt{b^2 - 9} + b)}{3}$

 Solve $\left(b^2 - 9 > 0, b\right)$

 b <-3 or b > 3

b.
$$-3 \le b \le 3$$
 1A

c.
$$y = 6ex + 19e$$

$$\begin{array}{|c|c|c|c|c|c|} \hline \hline & 1.7 & 1.8 & 1.9 \\ \hline & 1.7 & 1.8 & 1.9 \\$$

1A

The tangent line drawn correctly on the graph. 1A

d.
$$\int_{-3}^{-1.97} (l_4(x) - y_t) dt + \int_{-1.97}^{0.56} (y_t - l_4(x)) dt$$
 1M
= 86.8 **1A**

© The Mathematical Association of Victoria, 2019

e. $g: R \to R$, $g(x) = e^x$ and $h: [-1, \infty) \to R$, $h(x) = x^2 + 2x + 1$

Solve
$$\frac{d}{dx} \left(e^{x^2 + 2x + 1} + a \right) = 1$$
 for *x*.
 $x = -0.58$ correct to two decimal places 1A
Solve $e^{(-0.58...)^2 + 2x - 0.58...+1} + a = -0.58...$ for *a*. 1M
 $a = -1.77$ correct to two decimal places 1A

© The Mathematical Association of Victoria, 2019

i. Translate the graph of f, 2 units down to get the maximum bounded area.

$$a = -2$$
 1A

$$x = -1$$

x = -0.253 correct to three decimal places 1A

1A

j. area =
$$2 \int_{-1}^{-0.253...} (x - f_{-2}(x)) dx$$
 1M

= 0.23 correct to two decimal places **1A**

END OF SOLUTIONS