

Fortify Sample Exam 1B

MATHEMATICAL METHODS Written examination 1

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of	Number of questions	Number of
questions	to be answered	marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer booklet of 11 pages.
- Formula sheet.
- Working space is provided throughout the book.

Instructions

- Write your student number in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

© TRIUMPH PUBLICATIONS 2019

2

THIS PAGE IS BLANK

Instructions

Answer **all** questions in the space provided.

In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

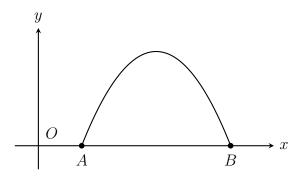
Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1 (4 marks)

a. Let $y = \frac{\sin(2x)}{2 - x^2}$.

Find $\frac{dy}{dx}$.

2 marks


b. Differentiate $2x^3 e^{\frac{x}{3}}$ with respect to x.

Question 2 (3 marks)

Find m, given that
$$\int_{1}^{3} \frac{2}{x+3} dx = \log_{e}(m).$$

Question 3 (4 marks)

A man standing at point A fires a model rocket into the air, which follows a trajectory modelled by the equation $h(x) = -2x^2 + 40x - 120$ where h is the height of the rocket above the ground and x is the horizontal distance from the man's house at O.

a. What is the maximum height that the rocket reaches?

b. How far away from the man does the rocket land?

3 marks

1 mark

Question 4 (3 marks)

Let X be a normally distributed random variable with mean 8 and variance 16. Let Z be the random variable which follows the standard normal distribution.

a. Find $\Pr(X < 8)$.

1 mark

b. Find the value of a, where Pr(X < 5) = Pr(Z > a).

Question 5 (5 marks)

The graphs of $y = 2\cos(x)$ and $y = \frac{a}{3}\sin(x)$, where a is a real constant, have a point of intersection at $x = \frac{\pi}{6}$.

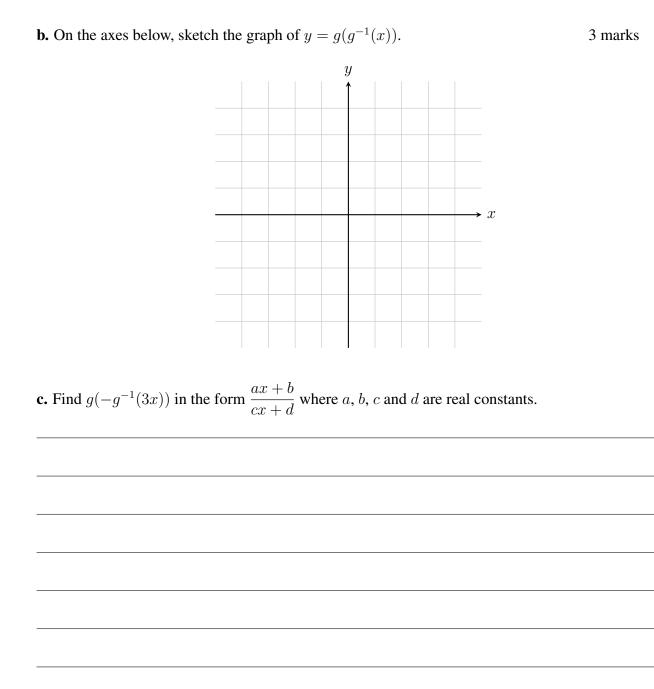
a. Find the value of *a*.

2 marks

b. If $x \in \left[0, \frac{3\pi}{2}\right]$, find the coordinates of the two points of intersection between these graphs.

Question 6 (3 marks)

At a particular restaurant, it is known that 70% of customers will order a drink with their meal. If three customers are chosen at random, what is the probability that: **a.** all of them ordered a drink with dinner?


1 mark

b. exactly one of them ordered a drink with dinner?

Question 7 (8 marks)

Let $g: R \to R$, $g(x) = e^{3x} + 2$, **a.** Find the rule and domain of the inverse function g^{-1} .

2 marks

9

3 marks

TURN OVER

Question 8 (7 marks)

Let $f : R \to R$, $f(x) = a \log_e(ax) - 2x$, where a is a positive real constant. **a.** Find:

i. the x-coordinate of the stationary point of the graph of y = f(x), in terms of a.

2 marks

ii. the range of values of a such that the stationary point of y = f(x) lies above the x-axis.

2 marks

b. For a certain value of a, the tangent to the graph of y = f(x) at x = 2 passes through the origin. Find this value of a.

Question 9 (3 marks)

A continuous random variable X has a probability density function

$$f(x) = \begin{cases} e^x, & x \in [0, \log_e(2)] \\ 0, & \text{elsewhere} \end{cases}$$

Given that $\frac{d}{dx}(xe^x) = (x+1)e^x$, find E(X).

END OF QUESTION AND ANSWER BOOK

MATHEMATICAL METHODS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference. A questions and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Formula Sheet

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2h$		

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$	
$\frac{d}{dx}\Big((ax+b)^n\Big) = an(ax+b)^{n-1}$		$\int (ax+b)^n dx = \frac{1}{a(n+1)}(ax+b)^{n+1} + c, n \neq -1$	
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx}(\log_{e}(x)) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_{e} \left(x \right) + c, \ x > 0$	
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$		$\int \sin(ax) dx = -\frac{1}{a} \cos(ax) + c$	
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$	
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} =$	$= a \sec^2(ax)$		
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$		

Formula Sheet

Probability

$\Pr(A) = 1 - \Pr(A')$		$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$	
$\Pr(A \mid B) = \frac{\Pr(A \cap Pr(B))}{\Pr(B)}$	$\left(\frac{B}{B}\right)$		
mean	$\mu = \mathcal{E}(X)$	variance	$\operatorname{var}(X) = \sigma^2 = \operatorname{E}((X - \mu)^2) = \operatorname{E}(X^2) - \mu^2$

Probability distribution		Mean	Variance
discrete	$\Pr(X = x) = p(x)$	$\mu = \Sigma x p(x)$	$\sigma^2 = \Sigma \left(x - \mu \right)^2 p(x)$
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$\mathbf{E}(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p} - z\sqrt{\frac{p(1-p)}{n}}, \hat{p} + z\sqrt{\frac{p(1-p)}{n}}\right)$

END OF FORMULA SHEET