MATHEMATICAL METHODS

Units 3 & 4 – Written examination 2

2019 Trial Examination

SOLUTIONS

SECTION A: Multiple-choice questions (1 mark each)

Question 1

Answer: C

Explanation: Period: $\frac{2\pi}{\frac{1}{4}} = 2\pi \times 4 = 8\pi$ Range: [c - a, c + a] = [-1 - 2, -1 + 2] = [-3, 1]

Question 2

Answer: B

Explanation: negative quartic graph x-intercepts at x = a, x = b and x = c which gives brackets of (x - a)(x - b)(x - c)repeated factor at x = c, means $(x - c)^2$

Question 3

Answer: C

Explanation:

Solving by hand gives C, or use solve function on CAS and equate each option to the answer until the CAS offers a true response

1.1 *Doc Carbon RAD
solve(
$$y=\ln(1-3\cdot x)+1,x$$
) $x=\frac{-e^{-1}\cdot(e^{y}-e)}{3}$

 $\frac{1-e^{y-1}}{3}=\frac{-e^{-1}\cdot(e^{y}-e)}{3}$ true

Question 4

Answer: E

Explanation:

For inverse swap x and y and solve for y on CAS, take the equation of $y^{-1} = 3 - \frac{1}{\sqrt{x}}$ and domain of $(0, \infty)$ as dom $f^{-1} = ran f$

Question 5

Answer: C

Explanation:

	f(x)	g(x)	
Domain	[0, 10]	R	
Range	[0, 10]	(0,∞)	

Firstly for g(f(x)) to exist range $f \subseteq domain g$ The range g(f(x)) = range f

Question 6

Answer: D

Explanation: $\begin{bmatrix} m & 5 \\ 1 & m+4 \end{bmatrix}$ $m^{2} + 4m - 5 = 0$ m = -5, m = 1For infinitely many solutions same gradient and same y-intercept Sub in m = -5, m = 1 into both equations to find the answer

Question 7

Answer: B

Explanation:

Question 8

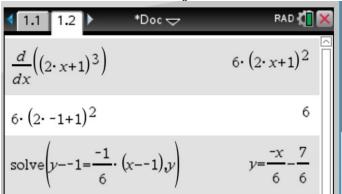
Answer: D

Explanation:

Independent events $Pr(A \cap B) = Pr(A) \times Pr(B) = 0.3 \times 0.45 = 0.135$ $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B) = 0.3 + 0.45 - 0.135 = 0.615$

Question 9

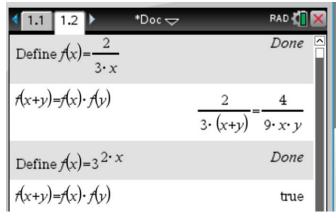
Answer: E


Explanation: $f(x) \rightarrow -f(x)$ vertical reflection $-f(x) \rightarrow -f(-x)$ horizontal reflection $-f(x) \rightarrow -f(-x) + 1$ vertical translation

Question 10

Answer: C

Explanation:


Perpendicular gradient = $-\frac{1}{6}$

Question 11

Answer: E

Explanation: Use CAS to solve

Question 12

Answer: A

Explanation: $X \sim Bi\left(10, \frac{1}{6}\right)$	
$\Pr(X \le 4) =$	
1.1 1.2 *Doc √	CAPS RAD 🚺 🗙
binomCdf $\left(10, \frac{1}{6}, 0, 4\right)$	0.984538

Question 13

Answer: C

Explanation:

$$x' = x - 3 \rightarrow x = x' + 3$$

 $y' = -2y + 4 \rightarrow y = 2 - \frac{y'}{2}$
 $y = \frac{1}{x^2}$
 $2 - \frac{y'}{2} = \frac{1}{(x'+3)^2}$
 $-\frac{y'}{2} = \frac{1}{(x'+3)^2} - 2$
 $\frac{y'}{2} = \frac{-1}{(x'+3)^2} + 2$
 $y' = \frac{-2}{(x'+3)^2} + 4$

Question 14

Answer: A

Explanation:

$$p + 2p + p + \frac{p}{2} + \frac{3p}{2} = 1$$

 $6p = 1$
 $p = \frac{1}{6}$
 $E(X) = 1 \times \frac{1}{6} + 2 \times 2\left(\frac{1}{6}\right) + 3 \times \frac{1}{6} + 4 \times \frac{\frac{1}{6}}{2} + 5 \times \frac{3 \times \frac{1}{6}}{2}$
 $E(X) = \frac{1}{6} + \frac{2}{3} + \frac{1}{2} + \frac{1}{3} + \frac{5}{4}$
 $E(X) = \frac{35}{12}$

Question 15

Answer: E

Explanation: p = 1 two intersections p = 4 two intersections Between p = 1 and p = 4 three intersections therefore 1

Question 16

Answer: D

Explanation: integration by recognition $\int \frac{2x}{x^{2}+2} dx = \log_{e}(x^{2}+2) + c$ $2 \int \frac{x}{x^{2}+2} dx = \log_{e}(x^{2}+2) + c$ $\int \frac{x}{x^{2}+2} dx = \frac{1}{2}\log_{e}(x^{2}+2) + c$ $\int \frac{3x}{x^{2}+2} dx = \frac{3}{2}\log_{e}(x^{2}+2) + c$

Question 17

Answer: A

Explanation:

x = 42, n = 50, CI = 95%RAD 🚺 1.1 1.2 *Doc ▽ zInterval_1Prop 42,50,0.95: stat.results "Title" "1-Prop z Interval" "CLower" 0.738384 0.941616 "CUpper" 0.84 "p" "ME" 0.101616 "n" 50.

Question 18

Answer: B

Explanation: $y_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$ $0.4 = \frac{1}{a-a} \int_{-a}^{a} \sin^{2}(x) dx$ solve on CAS for a

Question 19

Answer: C

Explanation: 400 pens initially, 10 run out in first 6 weeks $Pr(X < 6) = \frac{10}{400} = 0.025$ $Pr(Z < z) = 0.025 \quad invNorm(0.025,0,1) = -1.9599639 \dots$ $z = \frac{x-\mu}{\sigma} \qquad -1.9599 = \frac{6-14}{\sigma}$ $\sigma = 4.08 \approx 4$ weeks

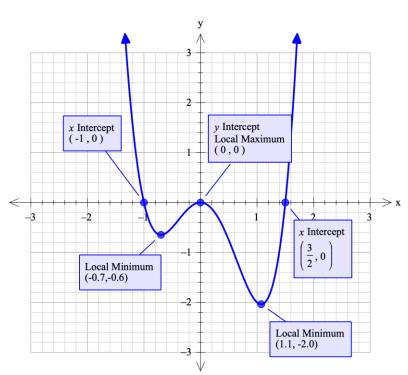
Question 20

Answer: E

Explanation: Each area between the two graphs is the same g(x) starts above f(x) hence E is correct.

SECTION B: Extended response questions

-	estion 1 (9 marks) B(23) = 2A			
a.	$2A = Ae^{23k}$ $2 = e^{23k}$	(1 M)		
	$\log_e(2) = 23k$	(1 M)		
	$k = \frac{1}{23} \log_e(2)$ k = 0.030137	(1M)		
	k = 0.03 as required			3 marks
b.	$15000 = Ae^{0.03 \times 60}$ $15000 = Ae^{1.8}$ A = 2479.48	(1M)		
	A = 2479.48 A = 2479 bacteria	(1A)		2 marks
c.	B(90) = 36887 bacteria	a		1 mark
d.	3900 bacteria			1 mark
e.	P(t) = B(t) 3900e ^{0.02t} = 2479e ^{0.033}	t	(1M)	
	t = 45.3121			
	t = 45 mins and 19 seco	nds	(1A)	
				2 marks Total 9 marks
01	estion 2 (15 marks)			


Question 2 (15 marks) a. f(x) = 0(-1,0), (0,0) and $\left(\frac{3}{2}, 0\right)$ (1A)

1 mark

b. f'(x) = 0 (1M) $8x^3 - 3x^2 - 6x = 0$ $x = \frac{-\sqrt{201+3}}{16}, x = 0, x = \frac{\sqrt{201+3}}{16}$ (-0.7, -0.6), (0,0) and (1.1, -2.0)

x	-1	-0.7	-0.2	0	1	1.1	2
sign	_	0	+	0	-	0	+
slope	/	_	/	_	\	_	/

Local Minimum at $(-0.7, -0.6)$	(1A)
Local Maximum at (0,0) and	(1A)
Local Minimum at (1.1, –2.0)	(1A)

1M – correct shape 1M – correct intercepts 1M – correct turning points 3 marks

d.	<i>c</i> > 2	(1A)
----	--------------	------

c.

e.
$$f'(x) = 8x^3 - 3x^2 - 6x$$

 $f'(1) = -1$ (1M)
 $f(1) = -2$
 $y - 2 = -1(x - 1)$
 $y = -x - 1$ (1A)

f.
$$-x - 1 = 2x^4 - x^3 - 3x^2$$
 (1M)
 $x = -1, \ x = -\frac{1}{2}, \ x = 1$
 $(-1,0), \left(-\frac{1}{2}, -\frac{1}{2}\right), (1, -2)$ (1A)

1 mark

2 marks

2 marks

g.
$$\int_{-1}^{-\frac{1}{2}} ((-x-1) - f(x)) dx + \int_{-\frac{1}{2}}^{1} (f(x) - (-x-1)) dx$$
 (1M)
 $\frac{41}{320} + \frac{297}{320} = \frac{169}{160} units^2$ (1A)

2 marks Total 15 marks

Question 3 (12 marks)

a.	

i. Period $\frac{2\pi}{\frac{3}{2}} = 2\pi \times \frac{2}{3} = \frac{4\pi}{3}$	(1A)
Amplitude 1	(1A)
ii. Period 2π	(1A)

Amplitude 2 (1A)

2 + 2 = 4 marks

b.
$$\cos\left(\frac{3x}{2}\right) = -2\cos(x)$$
 (1M)

$$\int \frac{1.1 \cdot 2 \cdot 90c}{\cos\left(\frac{3 \cdot x}{2}\right) = -2 \cdot \cos(x), x} = -2 \cdot$$

c. [-4.189,4.189]

1 marks

d.

i. [-1,1] (1A)ii. [-2,2] (1A)

1 + 1 = 2 marks

e.
$$2\int_{-4.189}^{-1.350} (g(x) - f(x)) dx + \int_{-1.350}^{1.350} (f(x) - g(x)) dx$$
 (1M)
 $2 \times 4.28257 + 5.10104 = 13.6662$
 $14m^2$ (1A)

2 marks Total 12 marks Question 4 (15 marks)

a. $n = 1000, p = \frac{7}{8}$ $E(X) = np = 1000 \times \frac{7}{8}$ (1M) E(X) = 875 (1A)

2 marks

b. $X \sim Bi\left(400, \frac{7}{8}\right)$ $1.1 \quad 1.2 \quad *Doc \bigtriangledown RAD$ $binomCdf\left(400, \frac{7}{8}, 0, 355\right) \quad 0.795545$ $Pr(X \le 355) = 0.796$

(1M)

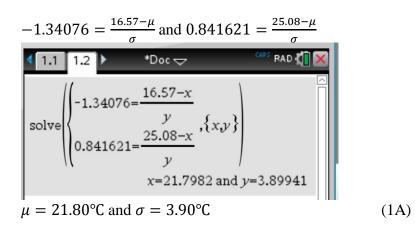
(1A)

(1M)

c. $\Pr(X < 350 | X > 100) = \frac{\Pr(X < 350 \cap X > 100)}{\Pr(X > 100)}$ (1M) $\frac{Ps(101 \le X \le 349)}{Pr(X \ge 101)} = 0.462$ (1A)

2 marks

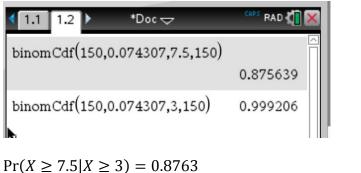
2 marks


d. $Y \sim Bi(30, 0.35)$ (1M) $1.1 1.2 \times Doc = Carrow Carro$

2 marks

e. Using $z = \frac{x-\mu}{\sigma}$ and simultaneous equations $\Pr(Z < a) = 0.09$, where $a = \frac{16.57 - \mu}{\sigma}$ $\boxed{1.1 \ 1.2 \ *Doc \bigtriangledown \ RAD}$ $\boxed{a = -1.34076 \dots}$ (1M)

$$Pr(b < 25.08) = 0.80, where b = \frac{25.08 - \mu}{\sigma}$$


$$1.1 \quad 1.2 \quad *Doc \bigtriangledown Carse RAD \quad (arrow RAD \quad$$

f. $X \sim N(47.2, 3.6^2)$ Pr(X < 42) = 0.074307

 $Pr(\hat{P} \ge 0.05 | \hat{P} \ge 0.02) = Pr(X \ge 150 \times 0.05 | X \ge 150 \times 0.02)$ $Pr(X \ge 7.5 | X \ge 3) = \frac{Pr(X \ge 7.5 \cap X \ge 3)}{Pr(X \ge 3)}$ (1M) $Pr(X \ge 7.5 | X \ge 3) = \frac{Pr(X \ge 7.5)}{Pr(X \ge 3)}$

(1A)

(1M)

3 marks

$$g. \quad \hat{p} = \frac{1}{15} \\ \left(\frac{1}{15} - 1.96\sqrt{\frac{\frac{1}{15} \times \frac{14}{15}}{150}}, \frac{1}{15} + 1.96\sqrt{\frac{\frac{1}{15} \times \frac{14}{15}}{150}}\right)$$

OR use CAS

1.1 1.2	► *Doc •	🗢 🛛 🛱 🗱
zInterval_	1Prop 10,150,	0.95: stat.results
	["Title"	"1-Prop z Interval"
	"CLower"	0.026748
	"CUpper"	0.106585
	"p"	0.066667
	"ME"	0.039919
	"n"	150.

1 mark Total 15 marks

1 mark

Question 5 (9 marks)

a.
$$f'(x) = 0$$

 $0 = -2x(2x^2 - n^2)$
 $\left(\frac{n\sqrt{2}}{2}, \frac{n^4}{4}\right), \left(-\frac{n\sqrt{2}}{2}, \frac{n^4}{4}\right), (0,0)$ (1A)

b.
$$\int_{-n}^{n} f(x) dx = \frac{4}{15}$$
$$\frac{4n^{5}}{15} = \frac{4}{15}$$
$$n = 1$$
(1A)
$$x = 1, x = 0, x = -1$$
(1A)

c.
$$0 = -mx^{2} + m$$
$$-m = -mx^{2}$$
$$1 = x^{2}$$
$$x = \pm 1 \text{ as required}$$

1 mark

2 marks

d. Area =
$$2 \int_{-1}^{-\sqrt{m}} (f(x) - g(x)) dx + \int_{-\sqrt{m}}^{\sqrt{m}} (g(x) - f(x)) dx$$
 (1M)
= $\frac{32 m^2 - 20m + 4}{15}$ (1A)

2 marks

e.

i.
$$f(b) = -b^2(b-n)(b+n)$$

 $f'(b) = -2b(2b^2 - n^2)$ (1A)

ii.
$$y - f(b) = f'(b)(x - b)$$
 (1M)
 $y - (-b^2(b - n)(b + n)) = (-2b(2b^2 - n^2))(x - b)$
 $y = -2b(2(2b^2 - n^2)x + 3b^4 - b^2n^2)$ (1A)

1 + 2 = 3 marks Total 9 marks