

Victorian Certificate of Education – Free Trial Examinations

MATHEMATICAL METHODS Free Trial Written Examination 1

SUGGESTED SOLUTIONS AND MARKING GUIDE BOOK

Abbreviations and Acronyms

WRT – with respect to; PDF – probability density function; nDP – correct to n decimal places

Marking instructions

- The relevant line(s) of working marked give an indication of what statement should be made in order to obtain that mark, but this is subject to the marker's discretion.
- Any mark related to the method can only be awarded if the student presents a convincing (and rigorous) argument.
- The final answer mark (if any) can only be awarded if the student provides the correct answer in either simplest form or the form required.
- Consequential marks can only be obtained for marks related to the method, not for any final answer.
- If elementary mathematical steps and/or logic are broken within a solution, it must be properly justified in order to obtain full marks.

Miscellaneous notes

Some questions may have multiple methods/solutions, including some that are beyond the scope of the course. The solutions provided are the ones that were intended by the examination authors.

Question 1a (2 marks)

]	Mark	Criteria
	1	Applies quotient rule, or equivalent
	2	Provides correct answer
$\frac{dy}{dx} =$	$\frac{d}{dx}[\sin(x)]$	$\frac{[x]\cdot 3x^2 - \frac{d}{dx} [3x^2]\sin(x)}{(3x^2)^2}$
=	$=\frac{3x^2\cos(x)}{x^2\cos(x)}$	$\frac{x) - 6x\sin(x)}{9x^4}$ Mark 1
=	$=\frac{x\cos(x)}{3}$	$\frac{-2\sin(x)}{x^3}$ Mark 2

Question 1b (2 marks)

Mark	Criteria		
1	Differentiates f WRT x using the chain rule		
2	Provides correct answer		
$f'(x) = 4 \frac{d}{dx} \left[\sqrt{x} \right] e^{\sqrt{x}}$			

$$(x) = 4 \frac{1}{dx} \left[\sqrt[4]{x} \right] e$$
$$= \frac{2}{\sqrt{x}} e^{\sqrt{x}}$$
Mark 1

Therefore, $f'(4) = e^2$. Mark 2

Question 2a.i (1 mark)

Mark	Criteria	
1	Provides a correct method	
$1 + \frac{2}{x-2} = \frac{x-1}{x}$	$\frac{2+2}{-2} = \frac{x}{x-2}$, as required.	Mark 1

Mark	Criteria	
1	Provides correct answer	
$\int g(x) dx = \int \left(= x - \frac{1}{2} \right) dx = \int \left(\frac{1}{$	$\left[1 + \frac{2}{x-2}\right] dx$ - $2\log_e(x-2)$ [since $x-2 > 0$]	Mark 1

Question 2b (2 marks)

Mark	Criteria	
1	Antidifferentiates f' WRT x	
2	Provides correct answer	
$f(x) = \int (\pi \cos(\pi x) + 2x^{-1/2}) dx$		
$=\sin(\pi x)$	$c) + 4x^{1/2} + c [c \in \mathbb{R}]$	Mark 1
Since $f(\frac{1}{4}) = \frac{1}{\sqrt{2}}$, we have $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + 2 + c$, and so $c = -2$.		
Therefore, $f($	$x) = \sin\left(\pi x\right) + 4\sqrt{x} - 2.$	Mark 2

Question 3a (2 marks)

Mark	Criteria	
1 Obtains correct reference angle, or equivalent		
2 Provides correct answer		
$\overline{\sin(\pi x)} = \frac{\sqrt{3}}{2}$, where $-2\pi < \pi x < \pi$	

$$\Rightarrow \pi x = \frac{-5\pi}{3}, \frac{-4\pi}{3}, \frac{\pi}{3}, \frac{2\pi}{3}$$
 Mark 1

$$\Rightarrow x = \frac{-5}{3}, \frac{-4}{3}, \frac{1}{3}, \frac{2}{3}$$
 Mark 2

Version 2 (April 2019)

Question 3b (2 marks)

Mark	Criteria	
1	Removes logarithms from equation	
2	Provides correct answer with justification	
$\log_e\left[\frac{(a+3)^2}{b^2}\right]$	= 2	
$\Rightarrow \frac{(a+3)^2}{b^2} = 0$	e^2	Mark 1
$\Rightarrow (a+3)^2 = e^{-1}$	b^2b^2	
$\Rightarrow a+3=-eb$	$[a+3 \neq +eb$ since we require $a+3 > 0$ with $b < 0$]	
Therefore, $a =$	-3-eb.	Mark 2

Question 4a (1 mark)

Mark	Criteria	
1	Provides correct answer	
Let $L \sim N(100, 8^2)$ $P_{1}(L = 108) = P_{1}(Z = \frac{108 - 100}{100})$		
$\Pr(L > 108) =$	$\Pr\left(Z > \frac{8}{8}\right)$	
=	$\Pr(Z > 1)$	
=	0.16 (2DP)	Mark 1

Question 4D (2 marks)

Mark	Criteria	
1	Applies conditional probability definition and utilises symmetry, either algebraically or graphically	
2	Provides correct answer	
$\Pr(L > 92 \mid L <$	$<100) = \frac{\Pr(92 < L < 100)}{\Pr(L < 100)}$ $= \frac{\Pr(-1 < Z < 0)}{\Pr(Z < 0)}$	
	$=\frac{0.5-0.16}{0.5}$	Mark 1
= 0.68 (2DP) Ma		Mark 2

Question 4c (2 marks)

Mark	Criteria	
1	1 Writes down an inequation involving <i>n</i> , or equivalent	
2	Provides correct answer	

Pr(L < 100) = 0.5, so we have

$$\sqrt{\frac{1/2 \times 1/2}{n}} \le \frac{1}{48}$$

$$\Rightarrow \frac{1}{2\sqrt{n}} \le \frac{1}{48}$$

$$\Rightarrow \sqrt{n} \ge 24$$
Therefore, the smallest value of *n* is 576. Mark 2

3

Question 5a (2 marks)

Mark	Criteria	
1	Finds zeros of f'	
2	Provides correct answer	
Let $f'(x) = \frac{1}{4} (3x^2 - 3) = 0.$		
$\Rightarrow x^2 - 1 = 0$		
$\Rightarrow x = -1, 1$		Mark 1
f(-1) = 1 and $f(1) = 0$.		
The stationary points of f are $(-1, 1)$ and $(1, 0)$.		Mark 2

Question 5b (2 marks)

Mark	Criteria
1	Labels all points correctly
2	Sketches correct graph shape

Question 5c (1 mark)

4

Mark	Criteria	
1	Provides correct answer	
From the grap	h, $\overline{f} = \frac{1}{2}$.	Mark 1

Question 6a (3 marks)

Mark	Criteria	
1	Finds expression for n in terms of m	
2	Expands resulting quadratic for Var(X)	
3	Provides correct answer	
Since $0.1 + m$	+ n = 1, we have $n = 0.9 - m$.	Mark 1

Since
$$0.1 + m + n = 1$$
, we have $n = 0.9 - m$.
 $Var(X) = E(X^2) - [E(X)]^2$
 $= m + 4n - (m + 2n)^2$
 $= -3m + 3.6 - (1.8 - m)^2$
 $= -3m + 3.6 - (3.24 - 3.6m + m^2)$
 $= -m^2 + 0.6m + 0.36$
Mark 2

Hence, a = -1, b = 0.6 and c = 0.36.

Question 6b (1 mark)

Mark	Criteria
1	Provides a correct method

Since the Var(X) is given by a 'negative' quadratic, provided *m* is suitable, maximum variance occurs when

$$m = \frac{-0.6}{2 \times (-1)} = 0.3$$
, as required. Mark 1

Mark 3

Mark	Criteria	
1	Writes down the possible event combinations, and their associated probabilities, or equivalent	
2	Provides correct answer	
$\Pr(E) = \Pr(1)$	$(2) + \Pr(2,1) + \Pr(2,2)$	
= 0.3	$(0.6+0.6\times0.3+0.6\times0.6)$ Mark	

= 0.18 + 0.18 + 0.36	
= 0.72	Mark 2

Question 7a.i (1 mark)

Mark	Criteria	
1	Provides a correct method	
$h(x) = \sqrt{x^2 - 2}$	$\overline{2x+5}$	
$=\sqrt{\left(x-1\right)^2-1+5}$ Mar		Mark 1
$=\sqrt{(x-1)}$	$1)^2 + 4$, as required.	

Question 7a.ii (2 marks)

Mark	Criteria
1	Provides correct domain
2	Provides correct range

domain(g) = domain(h) = $(-\infty, 1]$

We have range $(g) = [-1, \infty) \xrightarrow{f} [2, \infty)$ since f is strictly increasing. Hence, range $(h) = [2, \infty)$. Mark 2

Question 7b (2 marks)

Mark	Criteria
1	Provides correct rule of inverse function of h
2	Provides correct domain and range
Let $y = h^{-1}(x)$.	

 $x^{2} = (y-1)^{2} + 4 \implies y-1 = \pm \sqrt{x^{2}-4}$

However, since we require $h^{-1}(x) \le 1$, we have $h^{-1}(x) = 1 - \sqrt{x^2 - 4}$. Mark 1 domain $(h^{-1}) = [2, \infty)$ and range $(h^{-1}) = (-\infty, 1]$. Mark 2

Question 8a.i (2 marks)

Mark	Criteria	
1	Provides one correct transformation	
2	Provides correct answer	
• Dilation by	factor $\frac{1}{a}$ from the <i>x</i> -axis	Mark 1
• Dilation by	factor $\frac{1}{a}$ from the <i>y</i> -axis	Mark 2
Note: in any o	order	

Question 8a.ii (1 mark)

Mark	Criteria
1	Provides a correct method

Method 1:

The first positive *x*-axis intercept of the graph of $y = x\cos(x)$ is $\left(\frac{\pi}{2}, 0\right)$,

and so applying the transofmrations from part a.i, we have

$$(b,0) = \left(\frac{\pi}{2} \times \frac{1}{a}, \ 0 \times \frac{1}{a}\right) = \left(\frac{\pi}{2a}, 0\right).$$
 Mark 1

Thus, $b = \frac{\pi}{2a}$, as required.

Method 2:
Let
$$x cos(ax) = 0$$
, where $x > 0$.
 $cos(ax) = 0$
 $\Rightarrow ab = \frac{\pi}{2}$ [for first positive x-axis intercept] Mark 1
Thus, $b = \frac{\pi}{2a}$, as required.

Mark	Criteria
1	Differentiates $x \sin(ax)$ WRT x using the product rule.
2	Forms an equation involving a definite integral and finds an antiderivative of $x\cos(ax)$ WRT x
3	Substitutes $a = \pi/(2b)$
4	Provides correct answer
$\frac{d}{dt}[x\sin(ax)] = \frac{d}{dt}[x]\sin(ax) + x\frac{d}{dt}[\sin(ax)]$	

$$\frac{u}{dx}[x\sin(ax)] = \frac{u}{dx}[x]\sin(ax) + x\frac{u}{dx}[\sin(ax)]$$
$$= \sin(ax) + ax\cos(ax)$$

Since f is a PDF, we have

$$1 = \int_{0}^{b} x \cos(ax) dx$$

= $\frac{1}{a} [x \sin(ax)]_{0}^{b} - \frac{1}{a} \int_{0}^{b} \sin(ax) dx$ [using above result]
= $\frac{1}{a} [x \sin(ax)]_{0}^{b} + \frac{1}{a} [\frac{1}{a} \cos(ax)]_{0}^{b}$ Mark 2

Substituting
$$a = \frac{\pi}{2b}$$
 gives

$$\left[\frac{2bx}{\pi}\sin\left(\frac{\pi x}{2b}\right) + \frac{4b^2}{\pi^2}\cos\left(\frac{\pi x}{2b}\right)\right]_0^b = 1$$
Mark 3

$$\Rightarrow \frac{2b^2}{\pi} + 0 - 0 - \frac{4b^2}{\pi^2} = 1$$

$$\Rightarrow b^2 (2\pi - 4) = \pi^2$$

$$\Rightarrow b = \frac{\pi}{\sqrt{2\pi - 4}} \quad [b > 0]$$
Mark 4

END OF SUGGESTED SOLUTIONS AND MARKING GUIDE BOOK

Copyright © 2019 TWM Publications (Free Mathematical Methods Trial Written Examination 1 – Suggested Solutions and Marking Guide Book) For any questions, concerns and/or possible errors, please contact us via the contact form on our website.

Version 2 (April 2019)

Mark 1