

Victorian Certificate of Education – Free Trial Examinations

MATHEMATICAL METHODS Free Trial Written Examination 2

SUGGESTED SOLUTIONS AND MARKING GUIDE BOOK

Abbreviations and acronyms

WRT – with respect to; PDF – probability density function; PMF – probability mass function; nDP – correct to *n* decimal places

Marking instructions

- All multiple-choice questions are worth 1 mark and can only be awarded if the student selects the correct answer.
- The relevant line(s) of working marked give an indication of what statement should be made in order to obtain that mark, but this is subject to the marker's discretion.
- Any mark related to the method can only be awarded if the student presents a convincing (and rigorous) argument.
- The final answer mark (if any) can only be awarded if the student provides the correct answer in either simplest form or the form required.
- Consequential marks can only be obtained for marks related to the method, not for any final answer.
- If elementary mathematical steps and/or logic are broken within a solution, it must be properly justified in order to obtain full marks.

Miscellaneous notes

Some questions may have multiple methods/solutions, including some that are beyond the scope of the course. The solutions provided are the ones that were intended by the examination authors.

2

SECTION A – Multiple-choice questions

Question 1 (1 mark)

$$m = -\left(\frac{1-0}{-1-3/4}\right)^{-1} = \frac{7}{4}$$

The answer is **D**.

Question 2 (1 mark)

Period =
$$\frac{\pi}{\pi/2} = 2$$

domain $(g) = \mathbb{R} \setminus \left\{ k \mid \cos\left(\frac{\pi k}{2}\right) = 0 \right\}$
= $\mathbb{R} \setminus \{2k - 1 \mid k \in \mathbb{Z}\}$

The answer is **B**.

Question 3 (1 mark)

A following derivative sign table shows a stationary point of inflection.

x	< 2	= 2	>2
Graph direction	\	—	\

The answer is **C**.

Question 4 (1 mark)

$$\overline{f}' = \frac{f(4) - f(0)}{4 - 0} = \frac{1}{4} \log_e(3) + 1$$

The answer is **B**.

Question 5 (1 mark)

Method 1:

Noting that the third transformation swaps x and y coordinates, the transformations applied yield the following :

$$\begin{cases} x' = y \\ y' = 2x + 3 \end{cases} \Rightarrow \begin{cases} y = x' \\ x = \frac{y' - 3}{2} \end{cases}$$

Thus, the image of w(x) is given by [dropping dash notation]

$$\left(\frac{y-3}{2}\right)^{-3} = x$$

Hence, $y = 2x^{-1/3} + 3$.

The answer is **A**.

$Method \ 2:$

The transformations (1), (2) and (3) transform the graph of y = w(x) as follows:

$$y = w(x) \xrightarrow{(1)} y = w\left(\frac{x}{2}\right)$$

$$\xrightarrow{(2)} y = w\left(\frac{x-3}{2}\right)$$

$$\xrightarrow{(3)} x = w\left(\frac{y-3}{2}\right) = \left(\frac{y-3}{2}\right)^{-3} \quad \text{[functional inverse transformation]}$$

Therefore, $y = 2x^{-1/3} + 3$.

The answer is **A**.

Question 6 (1 mark) $f(x) = \frac{k(x+1-1)}{x+1} = k - \frac{k}{x+1}$ The asymptotes of the graph of *f* are x = -1 and y = k. Thus the asymptotes of the graph of f^{-1} are given by x = k and y = -1. The answer is **D**.

Question 7 (1 mark) $p'(x) = 3x^2 + 2kx + 3 = 0$ will have no real solutions for x if $(2k)^2 - 4 \times 3 \times 3 < 0 \implies -3 < k < 3$. The answer is **E**.

Question 8 (1 mark)

 $\frac{1}{4 - (-8)} \int_{-8}^{4} h(x) dx = 0 \implies a = 6$

The answer is **B**.

Question 9 (1 mark)

 $\begin{cases} mx - 4y = m \\ 2x - my = 1 \end{cases} \Rightarrow \begin{cases} y = \frac{m}{4}x - \frac{m}{4} \\ y = \frac{2}{m}x - \frac{1}{m} \end{cases}$

The linear system will have a unique solution for (x, y) provided

 $\frac{m}{4} \neq \frac{2}{m} \implies m \neq \pm 2\sqrt{2}.$ The answer is **C**.

Question 10 (1 mark)
For
$$f(x) = e^x - 1$$
, we have
 $f(x) + f(y) + f(x) f(y) = e^x - 1 + e^y - 1 + (e^x - 1)(e^y - 1)$
 $= e^x + e^y - 2 + e^{x+y} - e^x - e^y + 1$
 $= e^{x+y} - 1$
 $= f(x+y)$

The answer is **C**.

Question 11 (1 mark) Where $S \sim Bi(n, p)$, we have $\begin{cases} np = 6 \\ np(1-p) = 5 \end{cases} \Rightarrow n = 36 \text{ and } p = \frac{1}{6} \end{cases}$ Therefore, $Pr(S > 6) = Pr(S \ge 7) = 0.393251...$ The answer is **C**.

Question 12 (1 mark) Using the chain rule, $\frac{d}{dx} [\cos(2f(x))] = -\sin(2f(x)) \cdot 2f'(x)$ The answer is **E**.

Question 13 (1 mark) Since *f* is a PDF, we have

$$\int_{-a}^{a} f(t) dt = 1 \implies a = \log_{e} \left(\sqrt{2} + 1 \right)$$

The answer is **A**.

Question 14 (1 mark)

$$64 = \int_0^4 \left(4g\left(\frac{x}{2}\right) + ax \right) dx$$
$$= 8 \int_0^2 g(x) dx + a \int_0^4 x dx$$
$$= 32 + 8a$$
Hence, $a = 4$.

The answer is **B**.

Question 15 (1 mark)

Since *X* is given by a PMF, we require

$$\Pr(X=1) + \Pr(X=2) + \Pr(X=3) = 1 \implies a = \frac{1}{20}$$

The answer is **B**.

Question 16 (1 mark)

Method 1:

 $y = -f(\sqrt{x})$ is defined only for x > 0, and using the fact that $g(x) = \sqrt{x}$ is strictly increasing, local extrema occur at the values of x for which

$$\sqrt{x} = \frac{1}{2}, 3 \implies x = \frac{1}{4}, 9$$

The minus sign in front of f inverts the quality of the stationary points and their corresponding y-coordinates, and so, we have

a local minimum at
$$\left(\frac{1}{4}, -\frac{49}{16}\right)$$
 and a local maximum at $(9, 36)$.

The answer is **D**.

Method 2:

We can guess that the rule of *f* has the form f(x) = kx(x+3)(x-1)(x-4), where k > 0, and with f(3) = -36, we have k = 1.

$$\frac{d}{dx}\left[-f\left(\sqrt{x}\right)\right] = -2x + 3\sqrt{x} - \frac{6}{\sqrt{x}} + 11 = 0 \implies x = \frac{1}{4}, 9.$$

- $f\left(\sqrt{\frac{1}{4}}\right) = \frac{-49}{16}$ and $-f\left(\sqrt{9}\right) = 36$, and using a graph, we have
a local minimum at $\left(\frac{1}{4}, -\frac{49}{16}\right)$ and a local maximum at $(9, 36)$.
The answer is **D**.

Question 17 (1 mark) The sample proportion used to construct the confidence interval is $\hat{p} = \frac{0.035434 + 0.064566}{2} = 0.05.$

Hence, $2 \times 1.95996...\sqrt{\frac{0.05 \times 0.95}{n}} = 0.064556 - 0.035434 \implies n = 860.$

The answer is **D**.

4

$$\int f(x)dx = g'(x) \text{ gives } \frac{-a}{m}e^{-mx} + c = -bne^{-nx}.$$

Comparing components, we have

 $\begin{cases} (1) & c = 0 \\ (2) & -m = -n \\ (3) & \frac{-a}{m} = -bn \end{cases}$

Equation (2) gives $\frac{m}{n} = 1 \in \mathbb{N}$, $\frac{n}{m} = 1 \in \mathbb{N}$ and $\frac{m^2}{n^2} = 1 \in \mathbb{N}$. Equation (3) gives $\frac{a}{b} = mn \in \mathbb{N}$, and $\frac{b}{a} = \frac{1}{mn}$, but $\frac{1}{mn}$ is not necessarily a a natural number.

The answer is **E**.

Question 19 (1 mark)

Let n be the number of red marbles (and black marbles) in the bag.

$$\Pr\left(\hat{P}=0\right) = \frac{n}{2n} \times \frac{n-1}{2n-1} \times \frac{n-2}{2n-2} \times \frac{n-3}{2n-3} = \frac{1}{33} \implies n=6 \quad [n \in \mathbb{N}]$$

Thus the total number of marbles in the bag is 2n = 12. The answer is **B**.

Question 20 (1 mark)

Using a graph, it is clear that the graphs of *f* and *g* intersect once if a < 0. Noting that the graphs will always intersect at (0, 0), we have g'(0) = a,

and so, when a = 2, y = f(x) is tangent to the graph of g.

Using a graph, it can be seen that when a = 2, the graphs of f and g cross, and also only intersect once for a > 2.

Thus, the *maximal* set of values of *a* is $a \in (-\infty, 0) \cup [2, \infty)$.

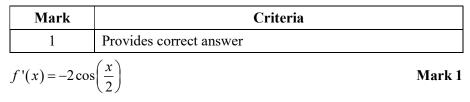
The answer is E.

SECTION B

Question 1a (1 mark)

Mark	Criteria
1	Provides correct answers
$Period = \frac{2\pi}{1/2} = range(f) = [-1]$	

Question 1b.i (1 mark)



Question 1b.ii (1 mark)

Mark	Criteria
1	Provides correct answer

 $f'(x) = 0 \implies x = \pi, 3\pi, 5\pi, 7\pi$

Using a graph, f'(x) > 0 for $x \in (\pi, 3\pi) \cup (5\pi, 7\pi)$ Mark 1

5

Question 1b.iii (2 marks)

Mark	Criteria	
1	Writes down expressions for x and y in terms of the images of x and y	
2	Provides correct answer	

$$\begin{cases} x' = x + \pi \\ y' = ay + b \end{cases} \Rightarrow \begin{cases} x = x' - \pi \\ y = \frac{y' - b}{a} \end{cases}$$

Mark 1

Hence, noting that $\sin\left(\theta - \frac{\pi}{2}\right) \equiv -\cos(\theta)$, we have $\frac{f'(x) - b}{a} = 2 - 4\sin\left(\frac{x - \pi}{2}\right) \implies f'(x) = 2a + b + 4a\cos\left(\frac{x}{2}\right).$ By comparing components, we have $a = -\frac{1}{2}$ and b = 1. Mark 2

Question 1c.i (2 marks)

Mark	Criteria	
1	Provides correct answer for tangent where $x = \pi/3$	
2	Provides correct answer for tangent where $x = 13\pi/3$	

At
$$x = \frac{\pi}{3}$$
, we have

$$y_1 = f'\left(\frac{\pi}{3}\right)\left(x - \frac{\pi}{3}\right) + f\left(\frac{\pi}{3}\right) \Rightarrow y_1 = \frac{\pi\sqrt{3}}{3} - \sqrt{3}x.$$
 Mark 1

At
$$x = \frac{13\pi}{3}$$
, we have
 $y_2 = f'\left(\frac{13\pi}{3}\right)\left(x - \frac{13\pi}{3}\right) + f\left(\frac{13\pi}{3}\right) \Rightarrow y_2 = \frac{13\pi\sqrt{3}}{3} - \sqrt{3}x.$ Mark 2

Question 1c.ii (3 marks)

Method 1:

Mark	Criteria	
1	Finds the equation of a line perpendicular to both tangents	
2	Finds points of intersection between perpendicular line segment and tangents	
3	Provides correct answer	

A line that is perpedicular to both y_1 and y_2 is the line $y = \frac{1}{\sqrt{3}}x$. Mark 1

$$\frac{1}{\sqrt{3}}x = \frac{\pi\sqrt{3}}{3} - \sqrt{3}x \implies x = \frac{\pi}{4}$$

$$\frac{1}{\sqrt{3}}x = \frac{13\pi\sqrt{3}}{3} - \sqrt{3}x \implies x = \frac{13\pi}{4}$$
Thus, $y = \frac{1}{\sqrt{3}}x$ intersects y_1 at $\left(\frac{\pi}{4}, \frac{\pi}{4\sqrt{3}}\right)$
and intersects y_2 at $\left(\frac{13\pi}{4}, \frac{13\pi}{4\sqrt{3}}\right)$.
Hence, $d = \sqrt{\left(\frac{13\pi}{4} - \frac{\pi}{4}\right)^2 + \left(\frac{13\pi}{4\sqrt{3}} - \frac{\pi}{4\sqrt{3}}\right)^2} = 2\pi\sqrt{3}$ units.
Mark 3

Method 2:

Mark	Criteria	
1	Forms a triangle with a line perpendicular to both tangents and a vertical line	
2	Finds a relevant angle in the triangle	
3	Provides correct answer	

Consider the following triangle shown. The gradient of a line perpedicular to both y_1 and y_2 is $\frac{1}{\sqrt{3}}$, and so, $\angle BAC = \frac{\pi}{3}$. Hence, $d = (y_2 - y_1)\cos\left(\frac{\pi}{3}\right) = 2\pi\sqrt{3}$ units. Mark 1 Mark 2 Mark 3

Question 2a (2 marks)

Mark	Criteria	
1	Finds the values of m and k	
2	Provides a correct method	
$\begin{cases} P_1(0) = \frac{1}{5} \\ P_1(4) = \frac{4}{5} \end{cases} =$	$\Rightarrow m = 4 \text{ and } k = \log_e(2)$	Mark 1
Thus, $P_1(t) =$	$1 - \frac{4}{e^{\log_e(2)t} + 4} = 1 - \frac{4}{2^t + 4}$, as required.	Mark 2

Question 2b.i (1 mark)

Mark	Criteria
1	Provides correct answer
$\overline{P_1}' = \frac{P_1(4) - P_1(0)}{4 - 0} = \frac{3}{20} \text{ day}^{-1}$	

Question 2b.ii (2 marks)

Mark	Criteria	
1	Forms equation involving $P'(t)$ and answer to Q2b.i	
2	Provides correct answer	
Let $P_1'(t) = \frac{4\log_e(2) \cdot 2^t}{(2^t + 4)^2} = \frac{3}{20}.$		/lark 1
t = 0.9, 3.1 days (2DP)		lark 2

Question 2c.i (1 mark)

Mark	Criteria	
1	Provides correct answer	
$P_{2}'(t) = \frac{4\log_{e}(2) \cdot 2^{t}}{\left(2^{t}+2\right)^{2}} - \frac{3}{50} = 0$ gives maximum coverage after		
t = 5.2 days ((1DP).	Mark 1

Question 2c.ii (1 mark)

Mark	Criteria	
1	Provides correct answer	
maximum $(P_2) = P_2(5.23979) = 59\%$ (0DP)		Mark 1

Question 2d (2 marks)

Mark	Criteria	
1	Finds values of t for which $P_2(t) = 0.5$	
2	Provides correct answer	
$P_2(t) = \frac{1}{2} \implies t = 3.14596, 8.09264 \text{ days}$		Mark 1
Hence, using a graph, we have more than 50% coverage for		

$$T = 8.09264... - 3.14596... = 4.9 \text{ days}$$
 (1DP). Mark 2

Question 2e (1 mark)

Mark	Criteria	
1	Provides correct answer	
$P_2(t) = 0 \implies t$	time to eradication is $t = 16.7$ days (1DP)	Mark 1

Question 2f (1 mark)

Mark	Criteria
1	Forms two equations to be solved simultaneously
2	Provides answer for q
3	Provides answer for eradication time

Let α be the value of t for which the bacteria cover the plate maximally.

$$P_{3}'(t) = \frac{4\log_{e}(2) \cdot 2^{t}}{(2^{t} + 4)^{2}} - q.$$

Since, $\left(\alpha, \frac{1}{2}\right)$ is the local maximum of P_{3} , we have
$$\begin{cases} P_{3}(\alpha) = 1/2 \\ P_{3}'(\alpha) = 0 \end{cases}$$
 Mark 1
 $\Rightarrow \alpha = 4.75188... \text{ and } q = 0.078 \quad (3DP)$ Mark 2
Hence, $P_{3}(t) = 0 \Rightarrow$ time to eradication is $t = 12.8$ days (1DP). Mark 3

Question 3a.i (1 mark)

Mark	Criteria	
1	Provides correct answer	
Let $W \sim \operatorname{Bi}(32)$	2, 0.08).	
$\Pr(W \ge 1) = 0$.9306 (4DP)	Mark 1

Question 3a.ii (2 marks)

Mark	Criteria	
1	Applies conditional probability definition	
2	Provides correct answer	
$\Pr(W < 4 \mid W)$	$\geq 1) = \frac{\Pr(1 \leq W \leq 3)}{\Pr(W \geq 1)}$	Mark 1
	$=\frac{0.679495}{0.930623}$ = 0.7302 (4DP)	Mark 2

Question 3b (1 mark)

Mark	Criteria	
1	Provides correct answer	
$L + D = N(200 + g^2)$		

Let $B \sim N(300, 8^2)$. Pr(B > 315) = 0.0304 (4DP)

Mark 1

Mark	Criteria
1	Applies conditional probability definition
2	Writes expression in terms of a newly defined binomial variable
3	Provides correct answer

$$Pr(\hat{P} < 0.05 | \hat{P} > 0.01) = \frac{Pr(0.01 < \hat{P} < 0.05)}{Pr(\hat{P} > 0.01)}$$

$$= \frac{Pr(2 < X < 10)}{Pr(X > 2)}, [X ~ Bi(200, 0.0303...)]$$

$$= \frac{Pr(3 \le X \le 9)}{Pr(X \ge 3)}$$
Mark 2
$$= \frac{0.857838...}{0.944098...}$$

$$= 0.909 (3DP)$$
Mark 3

Question 3d (2 marks)

Mark	Criteria	
1	Calculates the standard deviation of \hat{P}	
2	Provides correct answer	
$\operatorname{sd}(\hat{P}) = \sqrt{\frac{0.03}{2}}$	$\frac{30396\times0.969604}{200} = 0.12139$	Mark 1
Since $\Pr(Z < Z)$	1.28155) = 0.9, where Z denotes the standard nor	mal
variable, we have	ave	
<i>b</i> = 0.12139	$\times 1.28155 + 0.030396 = 0.0460$ (4DP).	Mark 2

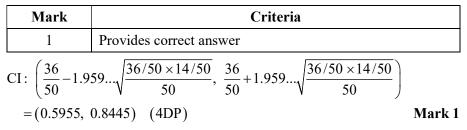
Question 3e (1 mark)

Mark	Criteria	
1	Forms an equation involving σ	
2	Provides correct answer	
Let $G \sim N(30)$	/	
$0.05 = \Pr(G)$,	
$\Rightarrow \Pr(Z > 1.$	$64485) = \Pr\left(Z > \frac{315 - 300}{\sigma}\right)$	Mark 1
$\Rightarrow \frac{315 - 300}{\sigma}$	<u>)</u> = 1.64485	
Hence, $\sigma = 9$.1194 mL (4DP)	Mark 2

Question 3f (1 mark)

Mark	Criteria
1	Provides correct answer
$\Pr(E) = [\Pr(e)]$	$G > 300)]^3 \times \Pr(G < 300)$
$=\left(\frac{1}{2}\right)^3$	$\frac{1}{2}$
$=\frac{1}{16}$	Mark 1

Question 3g (1 mark)



Mark	Criteria	
1	Provides correct answer	
$E(R) = \int_{250}^{310} r_{J}$	$f(r)dr = \frac{850}{3} \mathrm{mL}$	Mark 1

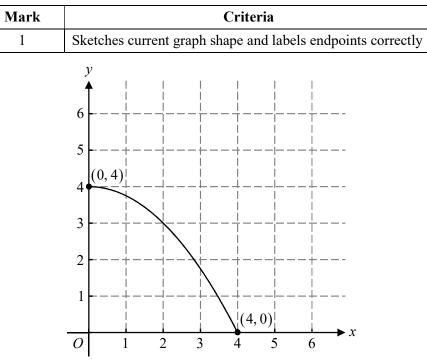
Question 3h.ii (1 mark)

Mark Criteria		
1	Writes down definite integral expression for $sd(R)$	
2	Provides correct answer	
$sd(R) = \sqrt{\int_{250}^{310} \left(r - \frac{850}{3}\right)^2 f(r) dr}$		Mark 1
$=\frac{10\sqrt{17}}{3}\mathrm{mL}$		Mark 2

Question 3i (1 mark)

Mark	Criteria	
1	Provides correct answer	
$\Pr(R > 300) =$	$\int_{300}^{310} f(r) dr = 0.1273 (4\text{DP})$	Mark 1

Question 4a (1 mark)



Question 4b.i (2 marks)

Mark	Criteria
1	Provides correct rule of inverse of f
2	Provides correct domain

Let
$$y = f^{-1}(x)$$
.
 $x = 4 - \frac{1}{4}y^2 \implies y = \pm 2\sqrt{4-x}$
However, we require $0 \le f^{-1}(x) \le 4$, so $f^{-1}(x) = 2\sqrt{4-x}$.
Mark 1
range $(f) = \text{domain}(f^{-1}) = [0, 4]$
Mark 2

Question 4b.ii (1 mark)

Mark	Criteria	
1	Finds values of x for which f and its inverse intersect	
2	Writes down a definite integral expression for the area	
3	Provides correct answer	

Using a graph, f and f^{-1} intersect at both endpoints and once on the line y = x.

$$f(x) = x \implies x = 2\sqrt{5} - 2 \quad [x > 0]$$
 Mark 1
Using a graph, we have $f(x) > f^{-1}(x)$ for $0 < x < 2\sqrt{5} - 2$, and so

by symmetry about the line y = x,

$$B = 2 \int_{0}^{2\sqrt{5}-2} \left[f(x) - f^{-1}(x) \right] dx$$
 Mark 2
= $\frac{80\sqrt{5} - 176}{3}$ units² Mark 3

Question 4c.i (1 mark)

Mark	Criteria
1	Provides correct answer

The rectangle has width m and height f(m) and so,

$$R(m) = m f(m) = 4m - \frac{1}{4}m^3$$
. Mark 1

Question 4c.ii (2 marks)

Mark	Criteria		
1	Provides correct answer for m for which $R(m)$ is	maximum	
2	Provides correct answer for $A_{\rm R}$		
$R'(m) = 4 - \frac{3}{2}$	$R'(m) = 4 - \frac{3}{4}m^2 = 0 \implies m = \frac{4}{\sqrt{3}} [0 \le m \le 4]$ Mark 1		
$A_{\rm R} = A \left(\frac{4}{\sqrt{3}}\right)$	$=\frac{32\sqrt{3}}{9} \text{ units}^2$	Mark 2	

Question 4c.iii (2 marks)

Mark	Criteria	
1	Finds S	
2	Provides correct answer	
$S = \int_{0}^{4} f(x) dx = \frac{32}{3} \text{ units}^{2}$		Mark 1
Therefore, $\frac{A_{\rm R}}{S}$	$\frac{R}{\sqrt{3}} = \frac{1}{\sqrt{3}}.$	Mark 2

Question 4c.ii (2 marks)

Mark	Criteria
1	Provides a correct method
$a(0) = 4 - 4 \times 10^{-10}$	$0^k - 4 \rightarrow (0, 4)$ lies on g

$$g(0) = 4 - 4 \times 0 = 4 \implies (0, 4) \text{ hes on } g$$
$$g(4) = 4 - 4 \times 1^k = 0 \implies (4, 0) \text{ lies on } g, \text{ as required.}$$

Mark 1

Question 4e (1 mark)

Mark	Criteria	
1	Provides a correct method	
$T(z) = \frac{1}{2} \left(4 + \frac{1}{2} \right) \left(4 + \frac{1}{2} \right) \left(1 + \frac{1}{2$	$-4-4\left(\frac{z}{4}\right)^k$ $\cdot z$	Mark 1
=4z-2	$z\left(\frac{z}{4}\right)^k$, as required.	

Question 4f.i (3 marks)

Mark	Criteria	
1	Differentiates T WRT z	
2	Finds expression for z in terms k that gives a max sized trapezium	imum-
3	Shows required result algebraically	
Let $T'(z) = 4$	$-2(k+1)\left(\frac{z}{4}\right)^k = 0.$	Mark 1
Then, $\left(\frac{z}{4}\right)^k =$	$\frac{2}{k+1} \implies z = 4 \left(\frac{2}{k+1}\right)^{1/k} [k > 1 \text{ and } 0 \le z \le 4]$	Mark 2
$A_{\mathrm{T}}(k) = T \left[4 \left(\right. \right. \right]$	$\left(\frac{2}{k+1}\right)^{1/k}$	
$=16\left(\frac{1}{k}\right)$	$\left(\frac{2}{k+1}\right)^{1/k} - 8\left(\frac{2}{k+1}\right)^{1/k} \times \frac{2}{k+1}$	
=(16-	$-\frac{16}{k+1}\left(\frac{2}{k+1}\right)^{1/4}$	Mark 3
$=\frac{16k}{k+1}$	$\left(\frac{2}{k+1}\right)^{1/k}$, as required.	

Question 4f.ii (1 mark)

Mar	k	Criteria
1		Provides a correct answer

Method 1:

Using a graph, $A_{\rm T}$ is strictly increasing and is bounded above, so

$$p = \lim_{k \to \infty} A_{\mathrm{T}}(k) = 16.$$
 Mark 1

Method 2:

The trapezium is bounded by the coordinate axes and the graph of *g*. Since *g* is strictly decreasing for all k > 1, it is too bounded inside the square described by $0 \le x \le 4$ and $0 \le y \le 4$, which has area 16 units². Thus, p = 16. Mark 1

Question 4g.i (1 mark)

Mark	Criteria
1	Provides a correct answer
$A = \int_0^4 g(x) dx$	$c = \frac{16k}{k+1}$ units ² Mark 1

Question 4g.i (1 mark)

Mark	Criteria	
1	Provides a correct answer	
$\frac{d}{dk} \left[\frac{A_{\rm T}}{A} \right] = 0 =$	$\Rightarrow k = 3.31107$	Mark 1
$A_{\rm T}(3.31107) = 9.7446 \text{ units}^2$ (4DP)		Mark 2

END OF SUGGESTED SOLUTIONS AND MARKING GUIDE BOOK

Copyright © 2019 TWM Publications (Free Mathematical Methods Trial Written Examination 2 – Suggested Solutions and Marking Guide Book) For any questions, concerns and/or possible errors, please contact us via the contact form on our website.

Version 2 (April 2019)