The Mathematical Association of Victoria

Trial Examination 2020 MATHEMATICAL METHODS

Trial Written Examination 2 - SOLUTIONS

SECTION A: Multiple Choice

Question	Answer	Question	Answer
1	В	11	С
2	В	12	D
3	А	13	В
4	D	14	Е
5	Е	15	А
6	С	16	D
7	С	17	Е
8	Е	18	В
9	С	19	В
10	Α	20	Α

Question 1

Answer B

$$y = \frac{a}{x-5} + 6$$

$$\frac{a}{35} + 6 = 0$$

$$\frac{35}{6} - 5$$

$$\frac{6a}{35-30} = -6$$

$$a = -5$$

$$y = \frac{-5}{x-5} + 6$$

$$y = \frac{5}{5-x} + 6$$

1.1 1.2	1.3 *MAVMC	rad 📘 🗙
solve $\left(\frac{a}{x-5}\right)$	$+6=0,a)x=\frac{35}{6}$	<i>a</i> =-5

Answer B

Question 3 Answer A

Solving $\cos(2x) = \cos(x)$

solve
$$(\cos(2\cdot x) = \cos(x), x)$$

 $\left\{x = 2 \cdot \pi \cdot \operatorname{constn}(1), x = \frac{2 \cdot \pi \cdot \operatorname{constn}(2)}{3}\right\}$

We read this as $x = 2\pi k, x = \frac{2\pi k}{3}$ where $k \in \mathbb{Z}$

Option A : $x = \frac{2\pi k}{3}$ where $k \in \mathbb{Z}$, also includes the set of solutions $x = 2\pi k$

© The Mathematical Association of Victoria, 2020

Answer D

 $f:[-3,4) \rightarrow R, f(x) = 2x+1$ and $g:[-4,2] \rightarrow R, g(x) = x^2 + 2x$. The domain of h(x) = f(x) + g(x) is the intersection of the domains of f and g = [-3,2]

The range of h(x) = f(x) + g(x) is [-3,13]

Question 5

Answer E

 $y = \frac{1}{2x} \text{ to be transformed to } y_T = -\frac{3}{x-1} + 6.$ Step 1: to change $y = \frac{1}{2x}$ to $y = \frac{1}{x}$ we can dilate from the x-axis by a factor of 2. $y = \frac{1}{2x} \Rightarrow y_1 = \frac{2}{2x} \Rightarrow y_1 = \frac{1}{x}$ Step 2: to change $y_1 = \frac{1}{x}$ to $y_2 = \frac{3}{x}$ we can dilate from the y-axis by a factor of 3. $y_1 = \frac{1}{\left(\frac{x}{3}\right)} \Rightarrow y_2 = \frac{3}{x}$

Step 3: to change $y_2 = \frac{3}{x}$ to $y_3 = -\frac{3}{x}$ we reflect in the x-axis Step 4: to change $y_3 = -\frac{3}{x}$ to $y_4 = -\frac{3}{x-1} + 6$ we translate in the positive direction of the x-axis by 1 unit and the y-axis by 6 units.

This is the required image graph: $y_T = -\frac{3}{x-1} + 6$

Answer C

2x + ky = akx + 3y = 7

Method 1 (Using ratios)

The simultaneous equations will have no solutions when $\frac{k}{2} = \frac{3}{k} \neq \frac{7}{a}$ or $\frac{2}{k} = \frac{k}{3} \neq \frac{a}{7}$

 $\frac{k}{2} = \frac{3}{k}$ $k^{2} = 6$ $k = \pm \sqrt{6}$ When $k = \sqrt{6}$ $\frac{\sqrt{6}}{2} \neq \frac{7}{a}$ $a \neq \frac{14}{\sqrt{6}}$ When $k = -\sqrt{6}$ $\frac{-\sqrt{6}}{2} \neq \frac{7}{a}$ $a \neq -\frac{14}{\sqrt{6}}$ $k = \sqrt{6} \text{ and } a \in R \setminus \left\{\frac{14}{\sqrt{6}}\right\} \text{ or } k = -\sqrt{6} \text{ and } a = R \setminus \left\{-\frac{14}{\sqrt{6}}\right\}$

Method 2 (using gradient and intercept)

Simultaneous equations will have no solutions when the gradients are equal and the *y*-intercepts are different.

$$2x + ky = a, \ y = -\frac{2}{k}x + \frac{a}{k},$$

$$kx + 3y = 7, \ y = -\frac{k}{3}x + \frac{7}{3}$$

$$m_1 = m_2$$

$$-\frac{2}{k} = -\frac{k}{3}$$

$$k^2 = 6$$

$$k = \pm\sqrt{6}$$

$$c_1 \neq c_2$$

$$\frac{a}{k} \neq \frac{7}{3}, \ a \neq \frac{7k}{3}$$

If $k = \sqrt{6}, \ a \neq \frac{7\sqrt{6}}{3}$ i.e. $a \neq \frac{14}{\sqrt{6}}$
If $k = -\sqrt{6}, \ a \neq \frac{-7\sqrt{6}}{3}$ i.e. $a \neq \frac{-14}{\sqrt{6}}$

Question 7

Answer C

$$f(x) = 2\log_{e}(1-4x)+1$$

Let $y = 2\log_{e}(1-4x)+1$
Inverse swap x and y
 $x = 2\log_{e}(1-4y)+1$
 $\log_{e}(1-4y) = \frac{x-1}{2}$
 $1-4y = e^{\frac{x-1}{2}}$
 $y = f^{-1}(x) = \frac{1}{4}\left(1-e^{\frac{x-1}{2}}\right)$
 $\frac{dy}{dx} = -\frac{1}{8}e^{\frac{x-1}{2}}$
 $\frac{dy}{dx} = -\frac{1}{8}e^{\frac{x-1}{2}}$ has an asymptote with equation $y = 0$ and a y-axis intercept at $-\frac{1}{8}e^{-\frac{1}{2}}$.

Question 8

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

$$x' = y + 2$$

$$y' = x^{-3}$$

$$y' = x^{1\frac{1}{3}} + 1$$

$$x - 3 = (y + 2)^{\frac{1}{3}} + 1$$

$$y = (x - 4)^{3} - 2$$

$$f(x) = a(x - b)^{3} + c$$

$$a = 1, b = 4, c = -2$$
OR

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

$$x' = y + 2$$

$$y' = x - 3$$

$$y = x' - 2 \text{ and } x = y' + 3$$

$$y = a(x - b)^{3} + c \text{ and so } x' - 2 = a(y' + 3 - b)^{3} + c$$

$$\frac{x' - 2 - c}{a} = (y' + 3 - b)^{3} \text{ and so } (y' + 3 - b)^{3} = \frac{x' - 2 - c}{a}$$
Now $y' = x^{1\frac{1}{3}} + 1$ and so $a = 1, c = -2, 3 - b = -1$

$$a = 1, b = 4, c = -2$$

Answer C

$$f(x) = e^{x^2 + 2x + 1} \text{ and } g(x) = \log_2(x)$$
$$g(f(x)) = \log_2(e^{(x+1)^2})$$
$$g(f(x)) = \frac{(x+1)^2}{\log_e(2)}, \text{ range is } [0,\infty)$$

One of the two stationary points of the graph is at $x = \frac{3 - \sqrt{3}}{6}$.

Question 11

Answer C

Let $y = f(\log_e(2x))$

Using the Chain rule
$$\frac{dy}{dx} = \frac{1}{x} f'(\log_e(2x))$$

Question 12

$$f(x) = ax^{6} + bx^{5} + x^{4} - 3$$

 $f'(x) = 6ax^{5} + 5bx^{4} + 4x^{3}$
 $x^{3}(6ax^{2} + 5bx + 4) = 0$
 $x = 0, x = \frac{-5b \pm \sqrt{25b^{2} - 96a}}{12a}$

Two more stationary points when $25b^2 - 96a > 0$

$$a < \frac{25b^2}{96}$$
1.3 1.4
1.5 *MAVMC **RAD**
solve($\frac{d}{dx}(a \cdot x^6 + b \cdot x^5 + x^4 - 3) = 0, x$)
 $x = \frac{-(\sqrt{25 \cdot b^2 - 96 \cdot a} + 5 \cdot b)}{12 \cdot a}$ or $x = \frac{\sqrt{25 \cdot b^2 - 96}}{12 \cdot a}$
solve($25 \cdot b^2 - 96 \cdot a > 0, a$)
 $a < \frac{25 \cdot b^2}{96}$

Answer **B**

Options A, C, D and E are correct. It is **incorrect** to state that the graph of the derivative of *f* is strictly increasing for $x \in (-\infty, -1] \cup [4, \infty)$. These values relate to the graph of *f*, **not** the graph of the derivative of *f*.

Question 14

Answer E

Average value
$$=\frac{1}{b-a}\int_{a}^{b}f(x)dx$$

Average value of $y = \cos^2(x)$ over the interval $\left[0, \frac{\pi}{2}\right]$ is $= \frac{1}{\frac{\pi}{2} - 0} \int_{0}^{\frac{\pi}{2}} \left(\cos^2(x)\right) dx$.

© The Mathematical Association of Victoria, 2020

Question 15 Answer A
Given
$$\int_{-1}^{6} f(x) = 3$$
, swap limits to get $\int_{-1}^{6} -1 + 2f(x) dx$
 $\int_{-1}^{6} -1 + 2f(x) dx = \int_{-1}^{6} -1 dx + 2 \int_{-1}^{6} f(x) dx$
 $= -7 + 2 \int_{-1}^{6} f(x) dx = -7 + 2 \times 3 = -1$

Answer D

Area
$$= \frac{\pi}{3} \left(g\left(-\frac{2\pi}{3}\right) + g\left(-\frac{\pi}{3}\right) + g\left(0\right) + g\left(\frac{\pi}{3}\right) + g\left(\frac{2\pi}{3}\right) + g\left(\pi\right) \right)$$
$$= \frac{\pi}{3} \left(2g\left(-\frac{2\pi}{3}\right) + 2g\left(-\frac{\pi}{3}\right) + g\left(0\right) + g\left(\pi\right) \right)$$

Question 17 Answer E $f(x) = a(x-b)^2(x+c)$ where *a*, *b* and *c* are positive real constants. The graph has *x*-intercepts at (-c, 0) and (b, 0).

Area = $\int_{-c}^{b} f(x) dx$

Question 18

Answer B

 $X \sim \operatorname{Bi}(n, 0.7)$

 $\Pr(X > 20) > 0.95$

 $Pr(21 \le X \le 36) = 0.953$ correct to three decimal places

More than 35.

◀	1.9	1.10	1.11		*MAVMC	RAD 📘	\times
b	inom	nCdf(35,0.	7 , 2	1,35)	0.926931	A
b	inom	nCaf(36,0.	7,2	1,36)	0.952962	

Question 19 Answer B $X \sim N(40,9)$ $Z \sim N(0,1)$ Pr(-3 < Z < 1) = Pr(-1 < Z < 3) $Pr(40 - 3 < X < 40 + 3 \times 3)$ = Pr(37 < X < 49)

Answer A

Let FW be flat white, C cappuccino, SB short black and M muffin.

$$\Pr(SB \mid M) = \frac{0.1 \times 0.6}{0.1 \times 0.6 + 0.35 \times 0.4 + 0.55 \times 0.3} = \frac{12}{73}$$

1.1	1.2	1.3	▶	*MAVMC	RAD 📘	×
exact			0.1	• 0.6	12	A
	0.1	0.6+	0.35	• 0.4+0.55• 0.3/	73	

SECTION B

Question 1

$$f(x) = a(x-b)^{3}(x-c)$$
a. $f'(x) = a(x-b)^{2}(4x-b-3c)$ **1A in fully factorised form b.** $f(x) = a(x-b)^{3}(x-c)$
Substituting $a = -\frac{1}{2}$, $b = -3$, $c = 1$ gives $f(x) = -\frac{1}{2}(x+3)^{3}(x-1)$.
By letting $y = 0$, we get x-intercepts at $x = 1$ and $x = -3$.
By using $f'(x)$ from **part a** we get $f'(x) = -\frac{1}{2}(x+3)^{2}(4x+3-3) = -\frac{1}{2}(x+3)^{2}(4x)$.
It follows that if $f'(x) = -\frac{1}{2}(x+3)^{2}(4x)$ we get
 $f'(0) = -\frac{1}{2}(0+3)^{2} \times 0 = 0$ as required **1M Verify (2 parts) c.** Stationary points are
 $\left(0, \frac{27}{2}\right)$: a local maximum turning point **1A**
 $(-3, 0)$: a stationary point of inflexion **1A**

d.
$$(-4,10), \left(-\sqrt{2}, \frac{13\sqrt{2}}{2} - 16\right), \left(\sqrt{2}, -\frac{13\sqrt{2}}{2} - 16\right)$$
 1A

Correctly graphed

e. Correct line

f.
$$(-2, -3)$$
, $(-0.21, -2.72)$, $(1.07, -2.53)$ correct to two decimal places
solve $\left(h(x) = \frac{2 \cdot x}{13} - \frac{35}{13}, x\right)$
 $\{x = -2, x = -0.2071888265, x = 1.070070347\}$
 $\left[\begin{array}{c} h(-2) & -3 \\ h(-0.2071) & -2.723074425 \\ h(1.07007) & -2.52766751 \\ \hline \end{array} \right]$
g.i. Area $= \int_{-2}^{-0.21} \left(\frac{2}{13}x - \frac{35}{13}\right) - h(x)dx + \int_{-0.21}^{1.07} h(x) - \left(\frac{2}{13}x - \frac{35}{13}\right)dx$ 2A
ii. Area = 12.4 square units, correct to one decimal place. 1A
h.i. Point on curve $\left(-\frac{1}{2}, -\frac{375}{64}\right)$ 1A
Gradient of tangent $= -\frac{13}{2}$.

Equation of the line parallel to the tangent going through point $\left(-\frac{1}{2}, -\frac{375}{64}\right)$ is

$$y = -\frac{13}{2}x - \frac{583}{64}.$$

2A

© The Mathematical Association of Victoria, 2020

ii. Let A be a point on the tangent and B be a point on the parallel line.

Choose a point on one of the lines and let the point on the other line, y = f(x), be (a, f(a)).

$$A\left(a, -\frac{13a}{2} - 16\right) \text{ and } B\left(-\frac{1}{2}, -\frac{375}{64}\right)$$
$$d\left(AB\right) = \sqrt{\left(-\frac{375}{64} - \left(-\frac{13a}{2} - 16\right)\right)^2 + \left(-\frac{1}{2} - a\right)^2} \qquad \mathbf{1M}$$

Find the minimum distance.

d = 1.05 correct to two decimal places 1A OR

Use the perpendicular line. $m_p = \frac{2}{13}$

$$\frac{-\frac{375}{64} - \left(-\frac{13a}{2} - 16\right)}{-\frac{1}{2} - a} = \frac{2}{13}, \ a = -1.53...$$
 1M
$$d(AB) = \sqrt{\left(-\frac{375}{64} - \left(-\frac{13 \times -1.53...}{2} - 16\right)\right)^2 + \left(-\frac{1}{2} - (-1.53...)\right)^2}$$

$$d = 1.05 \text{ correct to two decimal places}$$
 1A

d = 1.05 correct to two decimal places

c. Let C'(t) = 0 for stationary points. Let $200e^{\frac{1}{5}(t-10)} = 0$ gives no solutions. So no stationary points.

1M Show that

16

d. The gradient is at a maximum at t = 10.

- e. Gradient = 50 at t = 10. 1A
- f. Correct dilations 1A, Correct translation 1A
- Dilate from the *t*-axis by a factor of 1000
- Dilate from the *y*-axis by a factor of 5
- Translate in the positive *t* direction by 10 units

g. Correct shape and correct coordinate 1A, Asymptote 1A

h. Will never reach 1000 confirmed cases as there is a horizontal asymptote at C(t) = 1000. 1A

i. Solve $C'(t) = \frac{1}{10}$, t = 48 correct to the nearest integer Average rate of change per day for the $48^{\text{th}} \text{ day} = \frac{C(48) - C(47)}{48 - 47} = 0.11...$ 1MAverage rate of change per day for the 49th day = $\frac{C(49) - C(48)}{49 - 48} = 0.09...$

Question 3

a. $X \sim N(62.9, 1.6^2)$

Pr(X < 61) = 0.1175 correct to four decimal places

*MAVEA RAD 1.2 1.3 normCdf(-∞,61,62.9,1.6) 0.117515

b. $\Pr(X > 58 | X < 61)$

$$=\frac{\Pr(58 < X < 61)}{\Pr(X < 61)}$$

= 0.991 correct to three decimal places **1**A

© The Mathematical Association of Victoria, 2020

1M

c. $Y \sim \text{Bi}(30, 0.1175...)$ **1A**

$$Pr(6 \le Y \le 30) = 0.1330$$
 correct to four decimal places 1A

- **d.** E(Y) = np = 3.525 correct to three decimal places **1A**
- $sd(Y) = \sqrt{np(1-p)} = 1.764$ correct to three decimal places 1A

e. She could buy 2 packets on one day and none on the other 6 days or she could buy one packet on two days and none on the other days.

$$\binom{7}{1}(0.05)(0.7)^6 + \binom{7}{2}(0.2)^2(0.7)^5$$

= 0.1824 correct to four decimal places

1A

I.7 1.8 1.9 MAVEA
 RAD →

$$(0.7)^6 + nCr(7,2) \cdot (0.2)^2 \cdot (0.7)^5$$
 0.182356

f. Let T_p be the probability he plays with toilet paper and D the probability he eats his dinner.

© The Mathematical Association of Victoria, 2020

For independent events $\Pr(T_p \cap D) = \Pr(T_p) \times \Pr(D)$. Solve $\left(p + \frac{3p-2}{3}\right) \left(p + \frac{7-8p}{8}\right) = p$ for $p, p = \frac{7}{9}$ 1M $\Pr(T_p' \cap D') = 1 - \left(p + \frac{3p-2}{3} + \frac{7-8p}{8}\right) = \frac{1}{72}$ 1A $\Pr\left(\frac{1.12}{1.13} + \frac{1.14}{1.14}\right) + \frac{1.12}{1.13} + \frac{1.14}{1.14}\right) = \frac{1}{1.12}$ 1A $\Pr\left(\frac{p + \frac{3\cdot p - 2}{3}}{1 - \left(p + \frac{3\cdot p - 2}{3} + \frac{7-8\cdot p}{8}\right)}\right) = p_p p$ $p = \frac{7}{9}$ $1 - \left(p + \frac{3\cdot p - 2}{3} + \frac{7-8\cdot p}{8}\right) = \frac{7}{9}$ $\frac{1}{72}$

Question 4

a. $w_2 = 5\sin\left(2t + \frac{\pi}{2}\right) + 6$ Amplitude is 5, Period $\frac{2\pi}{2} = \pi$ **1A b.** $w_2 = 5\cos(2t) + 6$ **1A 1.14 1.15 1.16 ***MAVEA **RAD >** $5 \cdot \sin\left(2 \cdot t + \frac{\pi}{2}\right) + 6$ **5** $\cdot \cos(2 \cdot t) + 6$

c.
$$w_r = w_1 + w_2 = 6\cos(t) + 8 + 5\cos(2t) + 6$$

 $w_r = 6\cos(t) + 5\cos(2t) + 14$ 1A
d. Period = 2π 1A
Range is $\begin{bmatrix} \frac{81}{10}, 25 \end{bmatrix}$ 1A
1.15 1.16 1.17 MAVEA RAD (b)
1.15 1.16 1.17 MAVEA RAD (c)
1.88, 8.1)
1.88, 8.1)
1.88, 8.1)
1.9 MAVEA RAD (c)
1.88, 8.1)
1.9 MAVEA RAD (c)
1.9 MAVEA RAD (c)
1.15 (c)
1.15 (c)
1.15 (c)
1.16 (c)
1.17 (c)
1.18 (c)
1.19 (c)
(c)
(c)

1A

f. w_1 and w_2 labelled correctly	1A
W_r drawn correctly	1A
Correct coordinates	1A

$$\mathbf{g.} \left(\sin^{-1} \left(\frac{3}{10} \right) + \frac{\pi}{2}, \frac{81}{10} \right), \left(\frac{3\pi}{2} - \sin^{-1} \left(\frac{3}{10} \right), \frac{81}{10} \right)$$
$$\left(\sin^{-1} \left(\frac{3}{10} \right) + \frac{5\pi}{2}, \frac{81}{10} \right), \left(\frac{7\pi}{2} - \sin^{-1} \left(\frac{3}{10} \right), \frac{81}{10} \right)$$
$$\mathbf{1A}$$

i. $w_r(t) = 20$

$$\frac{0.658...+(6.941...-5.624...)+4\pi-11.907...}{4\pi} \times 100 \quad 1M$$

= 20.96% 1A

Question 5

$$f(x) = a\sqrt{3} - x$$
 and $g(x) = -(x-2)^3 + 3$, where $a \in R \setminus \{0\}$
a. Solve $f(x) = g(x)$ and $f'(x) = g'(x)$ for *a*. **1M**

There will be one solution if the curves touch and their gradients will also be equal at the point of intersection. This occurs when x = 1.419...

a = 2.542 correct to three decimal places

1A

b. Let $y = a\sqrt{3} - x$ Inverse swap x and y and solve for y. $x = a\sqrt{3} - y$ $f^{-1}(x) = 3 - \frac{x^2}{a^2}$ and $x \le 0$ 1A **1.1** 1.2 1.3 **MAVEAQ5 RAD solve(f(y)=x,y) $y=3-\frac{x^2}{a^2}$ and $\frac{x}{a}\ge 0$

Note: use a different variable name in the graphing section.

c. Solve f(x) = x for x. Intersection $\left(\frac{-a^2 + a\sqrt{a^2 + 12}}{2}, \frac{-a^2 + a\sqrt{a^2 + 12}}{2}\right)$ 1.3 1.4 1.5 * *MAVEAQ5 RAD solve $(a \cdot \sqrt{3 - x} = x, x)|a < 0$ and $x \le 0$ $x = \frac{a \cdot (\sqrt{a^2 + 12} - a)}{2}$ and a < 0 or $x = \frac{-a \cdot (\sqrt{a^2 + 12} - a)}{2}$

1A

d. Substitute (0, 3) into $f(x) = a\sqrt{3-x}$ and solve for *a*.

Since there are three points of intersections, one point of intersection is on the line y = x and the other two are at (0, 3) and (3, 0).

e. Solve $f(x) = f^{-1}(x)$ and $f'(x) = f^{-1'}(x)$ for *a*. **1M** There will be one solution if the curves touch and their gradients will also be equal at the point of intersection. This occurs when a = 2 and x = 2.

$$a \in \left[\sqrt{3}, 2\right)$$

$$1.4 \quad 1.5 \quad 1.6 \quad \text{*MAVEAQ5} \quad \text{RAD} \quad \times$$

$$solve\left(\frac{d}{dx}\left(a \cdot \sqrt{3-x}\right) = \frac{d}{dx}\left(3 - \frac{x^2}{a^2}\right) \text{ and } a \cdot \sqrt{3} \quad a = 2 \text{ and } x = 2$$

1A

