

MATHEMATICAL METHODS 2020

Unit 3 Key Topic Test 6 – Exponential & Logarithmic Functions Technology Active

Recommended writing time*: 45 minutes Total number of marks available: 30 marks

SOLUTIONS

Section A: Multiple Choice

Question 1

Answer: B

 $(3, \infty) \cap (-\infty, 10)$ (3, 10)

Question 2

Answer: C

As $x \to \infty$, $f(x) \to 1$

Question 3

Answer: B

 $81^m \times 9^n$ = $3^{4m} \times 3^{2n}$ = 3^{4m+2n}

Question 4

Answer: A

 $2log_b(x^2) = log_b9 + 4$ $log_bx^4 = log_b9 + log_bb^4$ $log_bx^4 = log_b9b^4$ $x^4 = 9b^4$ $x = \sqrt{3}b$ (Assume *b* must be positive.)

Question 5

Answer: D

Domain f(x) (-∞,2) $f^{-1}(x) = 2 - e^{-x}$

Question 6

Answer: C

 $10^{2} = mx - 5$ 105 = mx $x = \frac{105}{m}$ $2 = \frac{105}{m}$ $m = \frac{105}{2}$

Question 7

Answer: B

CAS solve

Question 8

Answer: D

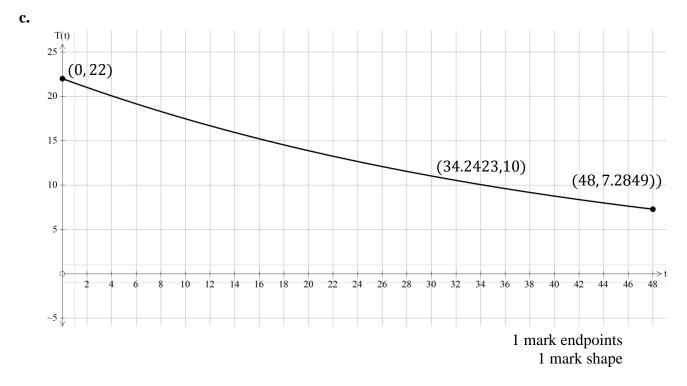
$$2log_2m + log_2n - log_2(m - n)$$

= $log_2m^2 + log_2n - log_2(m - n)$
= $log_2\frac{m^2n}{(m - n)}$

Section B: Extended Response

Question 1

a. $T(0) = 22^{\circ}C$


1 mark

- **b.** $10 = 22 \times 10^{-0.01t}$
 - $t \approx 34$ hours 15 minutes

1 mark

1 mark

d.
$$T(20) = \frac{11}{5} \times 10^{\frac{4}{5}}$$

 $T_1(20) = \frac{11}{5} \times 10^{\frac{4}{5}}$ also
 $T_1(t) = a \times 10^{\frac{4}{5}+k(t-20)}$
 $T_1(20) = a \times 10^{\frac{4}{5}}$
 $a = \frac{11}{5}$

e.	$T_2(24) = 1$	1 mark
	k = -0.2856	1 mark

Question 2

a.	$1000 = A(1 - e^{-k}) $ (1) $120\ 000 = A(1 - e^{-2k}) $ (2)	1 mark
	$\frac{(2)}{(1)} \qquad 120 = \frac{1 - e^{-2k}}{1 - e^{-k}}$	1 mark
	$120 - 120e^{-k} = 1 - e^{-2k}$ 119 - 120e^{-k} + e^{-2k} = 0	1 mark
b.	$119 - 120e^{-k} + e^{-2k} = 0$ Let $a = e^{-k}$	1 mark
	$119 - 120a + a^{2} = 0$ a = 1, 119 $e^{-k} = 1, k = 0$, disregard as $k > 0$ $e^{-k} = 119$	1 mark
	$k = -\log_e(119)$	1 mark

c.
$$1000 = A(1 - e^{\log_e(119)})$$

 $1000 = A(1 - 119)$
 $A = -\frac{500}{59}$ 1 mark

d.
$$2\ 000\ 000 = -\frac{500}{59}(1 - e^{\log_e 119 \times t})$$

 $t = 2.5887$ hours 1 mark

Question 3

a.	C(0) = 20	
	$S(0) = 22.5 \approx 23$	1 mark

b. $C(1.5) \approx 40$ $S(1.5) \approx 27$ 1 mark

c.	$20 \times 10^{0.2t} = 22.5 \times 10^{0.05t}$	
	$10^{0.15t} = \frac{9}{8}$	1 mark
	$0.15t = log_{10}(\frac{9}{8})$	1 mark

$t = \frac{20}{3} \log_{10}(\frac{9}{8})$	1 mark
---	--------

d.
$$d(t) = |C(t) - S(t)|$$

 $d(0) = 2.5$
 $d(2) \approx 21.91 \dots$

d(t) is greatest after 2 years

1 mark

1 mark