

P.O. Box 1180 Surrey Hills North VIC 3127 Phone 03 9836 5021

info@theheffernangroup.com.au www.theheffernangroup.com.au

SECTION A – Multiple-choice answers

1.	В	9.	Α	17.	В
2.	D	10.	D	18.	B
3.	Ε	11.	Ε	19.	Е
4.	С	12.	С	20.	Е
5.	В	13.	В		
6.	D	14.	С		
7.	В	15.	Α		
8.	Α	16.	С		

MATHS METHODS 3 & 4

TRIAL EXAMINATION 2

SOLUTIONS

2021

SECTION A – Multiple-choice solutions

Question 1

Define $p(x) = x^4 - 2x^3 - k$ on your CAS. Solve p(3) = 15 for k (ie using the remainder theorem) k = 12The answer is B.

Question 2

For option A, maximal domain is $x \in R \setminus \{-1\}$. For option B, maximal domain is x+1>0 i.e. $x \in (-1, \infty)$. For option C, maximal domain is x+1>0 i.e. $x \in (-1, \infty)$. For option D, maximal domain is $x+1\ge 0$ i.e. $x \in [-1, \infty)$. For option E, maximal domain is $x \in (-\infty, \infty)$ i.e. $x \in R$. The answer is D.

Question 3

Method 1 – using CAS
Solve
$$2\sin\left(3x + \frac{\pi}{6}\right) - \sqrt{3} = 0$$
 for x .
 $x = \frac{(12k+1)\pi}{18}$ or $x = \frac{(4k+1)\pi}{6}, k \in \mathbb{Z}$
$$= \frac{(12k+3)\pi}{18}$$

The answer is E.

Question 3 (cont'd)

$$\frac{\text{Method } 2}{2\sin\left(3x + \frac{\pi}{6}\right) - \sqrt{3}} = 0$$

$$\sin\left(3x + \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

$$3x + \frac{\pi}{6} = 2k\pi + \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \quad \text{or} \quad 3x + \frac{\pi}{6} = (2k+1)\pi - \sin^{-1}\left(\frac{\sqrt{3}}{2}\right), \quad k \in \mathbb{Z}$$

$$= 2k\pi + \frac{\pi}{3} \quad = 2k\pi + \pi - \frac{\pi}{3}$$

$$3x = 2k\pi + \frac{\pi}{6} \quad 3x = 2k\pi + \frac{\pi}{2}$$

$$= \frac{12k\pi + \pi}{6} \quad 3x = 2k\pi + \frac{\pi}{2}$$

$$= \frac{4k\pi + \pi}{2}$$

$$x = \frac{\pi(12k+1)}{18} \quad x = \frac{\pi(4k+1)}{6}$$

$$x = \frac{\pi(12k+3)}{18}$$

The answer is E.

Question 4

For option A, $h(x) = \frac{1}{3}f(x+2)$, we have a dilation by a factor of $\frac{1}{3}$ from the *x*-axis so (1,-2) becomes $\left(1,-\frac{2}{3}\right)$ then a translation 2 units to the left, which gives $\left(-1,-\frac{2}{3}\right)$ which is not point *Q*. Reject option A.

For option B, h(x) = 2f(x-3), we have a dilation by a factor of 2 from the x-axis so (1,-2) becomes (1,-4) then a translation 3 units to the right which gives (4,-4). Reject option B. For option C, h(x) = 3f(x-2), we have a dilation by a factor of 3 from the x-axis so (1,-2) becomes (1,-6) then a translation 2 units to the right which gives (3,-6) which is the image point Q that is required.

Option D gives an image point of (1,-6) and option E gives an image point of (-1,-6). The answer is C.

Question 5

Do a quick sketch of y = h(x).

For h^{-1} to exist, then *h* has to be 1:1. Since the local maximum and local minimum of the graph of $y = 4x^3 - 12x + 5$ occurs at x = -1 and at x = 1 respectively, then *h* will be 1:1 for D = [-1, 0]. The answer is B.

The average rate of change of *f* between x = 0 and x = 4 is given by

$$\frac{f(4) - f(4) - f(4)}{4 - (4)} = \frac{16 - 0}{4} = \frac{16 - 0}{4}$$

f(0)

The instantaneous rate of change of f at x = a is given by f'(a).

Solve f'(a) = 4 for a

$$2a = 4$$

 $a = 2$

The answer is D.

Question 7

The graph of y = g(x) must have

- a negative gradient for x < 0
- a zero gradient for x = 0
- a positive gradient for x > 0
- Option A has a positive gradient for x < 0.

Reject option A.

Option B has a negative gradient for x < 0, a zero gradient at x = 0 and a positive gradient for x > 0.

Also, as $x \to -\infty$, gradient $\to 0$ and as $x \to \infty$, gradient $\to 0$.

Option B could represent y = g(x).

Option C can't because it has a sharp point at x = 0 and therefore the gradient at x = 0 is not defined.

Option D does not have a zero gradient at x = 0.

Option E has a positive gradient for x < 0 and a negative gradient for x > 0. The answer is B.

Question 8

Since A and B are independent, $Pr(A) \times Pr(B) = Pr(A \cap B)$ $p \times Pr(B) = p - q$ $Pr(B) = \frac{p - q}{p}$

The answer is A.

Question 9

Draw a diagram. Pr(6.6 < X < 8.2) = Pr(-1 < Z < 3)Since this answer is not offered, look for an equivalent area under the bell curve, remembering that it is symmetrical about the line Z = 0. So Pr(-1 < Z < 3) = Pr(-3 < Z < 1). This is offered in option A. The answer is A.

We are sampling from a small population of 10 balls. If $\hat{p} = 0.25$, then we are interested in one of the four balls in the sample being white.

So
$$Pr(\hat{P} = 0.25) = \frac{{}^{2}C_{1} \times {}^{8}C_{3}}{{}^{10}C_{4}}$$
$$= \frac{8}{15}$$

The answer is D.

Question 11

For
$$f(x) = x + 1$$
,
 $f(x^2) = x^2 + 1$ and $2f(x) = 2x + 2$
Reject option A.
For $f(x) = \frac{1}{\sqrt{x}}$,
 $f(x^2) = \frac{1}{x}$ and $2f(x) = \frac{2}{\sqrt{x}}$
Reject option B.
For $f(x) = e^{\frac{x^2}{2}}$,
 $f(x^2) = e^{\frac{x^2}{2}}$ and $2f(x) = 2e^{\frac{x}{2}}$
Reject option C.
For $f(x) = \frac{1}{x-2}$,
 $f(x^2) = \frac{1}{x^2-2}$ and $2f(x) = \frac{2}{x-2}$
Reject option D.
For $f(x) = \log_e(x)$,
 $f(x^2) = \log_e(x^2)$ and $2f(x) = 2\log_e(x)$
 $= \log_e(x^2)$
So $f(x^2) = 2f(x)$

The answer is E.

5

Question 12

$$\int_{2}^{7} g(x)dx = \int_{2}^{4} g(x)dx + \int_{4}^{7} g(x)dx$$

$$6 = -1 + \int_{4}^{7} g(x)dx$$

$$7 = \int_{4}^{7} g(x)dx$$

So
$$\int_{4}^{7} (g(x)-1)dx = \int_{4}^{7} g(x)dx - \int_{4}^{7} 1dx$$

$$= 7 - [x]_{4}^{7}$$

$$= 7 - (7 - 4)$$

$$= 4$$

The answer is C.

Question 13

Note that
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (f(x) - g(x)) dx = \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} (g(x) - f(x)) dx$$
 and also $\int_{\frac{5\pi}{6}}^{\frac{3\pi}{2}} (f(x) - g(x)) dx = \int_{\frac{3\pi}{2}}^{\frac{13\pi}{6}} (g(x) - f(x)) dx$
So total area required

So total area required

$$= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (f(x) - g(x))dx + \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} (g(x) - f(x))dx + \int_{\frac{5\pi}{6}}^{\frac{3\pi}{2}} (f(x) - g(x))dx + \int_{\frac{3\pi}{2}}^{\frac{13\pi}{6}} (g(x) - f(x))dx$$
$$= 2\int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} (g(x) - f(x))dx + 2\int_{\frac{3\pi}{2}}^{\frac{13\pi}{6}} (g(x) - f(x))dx$$

The answer is B.

The answer is C.

<u>Method 2</u> – using formula $\frac{2p}{2}$

average value =
$$\frac{1}{2p - 3p} \int_{-3p}^{\infty} f(x) dx$$

= $\frac{1}{5p} \left(\int_{-3p}^{-p} (2x + 6p) dx + \int_{-p}^{2p} (-2x + 2p) dx \right)$
= $\frac{7p}{5}$

Note that the left hand branch of the graph has the rule y = 2x + 6p and the right hand branch has the rule y = -2x + 2p. (Use the gradient formula $m = \frac{y_2 - y_1}{x_2 - x_1}$ and the straight line formula $y - y_1 = m(x - x_1)$ to find these.) The answer is C.

Just out of interest, what the answer means graphically is that the area enclosed above the line $y = \frac{7p}{5}$ between function *f* and between x = -3p and x = 2p is equal to the area enclosed below the line $y = \frac{7p}{5}$ between the function *f* and between x = -3p and x = 2p. In other words in the diagram below, the big triangle above the line $y = \frac{7p}{5}$ is equal in area to

the sum of the areas of the two smaller triangles below the line $=\frac{7p}{5}$.

$$E(\hat{P}) = p \qquad sd(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$$
$$= 0.4 \qquad = \sqrt{\frac{0.4 \times 0.6}{24}}$$
$$= 0.1$$

So mean = 0.4 and standard deviation = 0.1. The answer is A.

Question 16

Since *m* is the median,
$$\int_{0}^{m} \frac{3}{28} (1 + \sqrt{x}) dx = 0.5$$
$$\int_{0}^{m} \frac{3}{28} (1 + \sqrt{x}) dx = \frac{m(2\sqrt{m} + 3)}{28} \quad \text{using CAS}$$
So
$$\frac{m(2\sqrt{m} + 3)}{28} = 0.5$$
$$3m + 2\sqrt{m^{3}} - 14 = 0$$

The answer is C.

Question 17

The graph of f is shown. The point (0,-1) lies on this graph.

A couple of tangents are drawn to the graph as shown. The *y*-intercept of these two tangents is less than -1.

v

The horizontal tangent shown, has a *y*-intercept of -1. This is the maximum possible value of the *y*-intercept i.e. of *c*. The answer is B.

 $f(g(x)) = \sqrt{x^2 - 2x}$ Note that f(g(x)) is defined because $r_g = [0, \infty)$ and $d_f = [0, \infty)$ i.e. $r_g \subseteq d_f$ So $d_{f(g(x))} = d_g$ $= (-\infty, 0]$ Do a quick sketch of f(g(x)) to find the range.

 $r_{f(g(x))} = [0,\infty)$ Option B offers this combination. The answer is B.

Question 19

A possible sketch is shown.

$$g(-a) = \frac{1}{-2a} + b$$

So the left endpoint of the left hand branch of the graph of g occurs at $\left(-a, b - \frac{1}{2a}\right)$.

$$g(2a) = \frac{1}{a} + b$$

So the right endpoint of the right hand branch of the graph of g occurs at $\left(2a, b + \frac{1}{a}\right)$.

$$r_{g} = \left(-\infty, b - \frac{1}{2a}\right] \cup \left[b + \frac{1}{a}, \infty\right]$$

The answer is E.

The first three possible graphs of f shown above (on the left hand side) are all when f is a positive cubic i.e. the minimum turning point lies to the right of the maximum turning point. The transformed graphs for each of these graphs of f are shown to their right i.e. the graph of g.

The transformation from f to g involves

Question 20

- a dilation by a factor of 2 from the *y*-axis
- a reflection in the *x*-axis
- a translation 1 unit to the right.

One of these graphs of g has a minimum turning point which occurs at a point where 1 < x < 3.

These values are not offered in the answers. The other possible graph of f is shown below.

This graph shows the graph of a negative cubic i.e. the minimum turning point lies to the left of the maximum turning point.

The transformed graph, g, has a minimum turning point occurring at a point where x > 3. The answer is E.

SECTION B

Question 1 (10 marks)

a. Find the *x*-coordinate of the maximum turning point. Solve f'(x) = 0 for x using CAS.

$$x = \frac{3}{e}$$
 (1 mark)

The graph of f is strictly decreasing for $x \in \left\lfloor \frac{3}{e}, \infty \right\rfloor$. (1 mark)

$$f'\left(\frac{3}{\sqrt{e}}\right) = -\frac{1}{2} \tag{1 mark}$$

b.

$$\tan(\theta) = \frac{1}{2}$$
$$\theta = \tan^{-1}\left(\frac{1}{2}\right)$$
$$= 0.4636...$$
$$= 26.5650.$$

So the tangent makes an angle of $180^{\circ} - 26.5650...^{\circ} = 153.4349...^{\circ}$ or 153° (to the nearest degree) with the positive direction of the *x*-axis. (1 mark)

d. The tangent at
$$x = \frac{3}{\sqrt{e}}$$
 has a slope of $-\frac{1}{2}$.
So the tangent at $x = a$ has a slope of 2 (ie the negative reciprocal).
Solve $f'(x) = 2$ for x. (1 mark)
 $x = \frac{3}{e^3}$
So $a = \frac{3}{e^3}$. (1 mark)
e. P is the point $(p, f(p))$ i.e. $\left(p, -p \log_e \left(\frac{p}{2}\right)\right)$.

e. *P* is the point
$$(p, f(p))$$
 i.e. $\left[p, -p \log_e\left(\frac{p}{3}\right)\right]$.
Equation of tangent at *P* is $y = p - (\log_e(p) - \log_e(3) + 1)x$ using CAS. (1 mark)
The *y*-intercept of this tangent is *p*. (1 mark)

f. From part e., the y intercept of the tangent at x = p is p. So the y-intercept of the tangent at $x = \frac{3}{\sqrt{e}}$ is $\frac{3}{\sqrt{e}}$. The tangent perpendicular to this tangent occurs at x = a i.e. at $x = \frac{3}{e^3}$ from part d.

So the *y*-intercept of this perpendicular tangent is $\frac{3}{e^3}$. (1 mark)

The distance between the y-intercepts is
$$\frac{3}{\sqrt{e}} - \frac{3}{e^3} = \frac{3e^{\frac{1}{2}} - 3}{e^3}$$
$$= \frac{3(e^{\frac{5}{2}} - 1)}{e^3}$$

(1 mark)

Question 2 (11 marks)

a.	The right endpoint of both the function n and the function s occurs at $P(1.5, 1)$		
	So <i>a</i> =1.5	(1 mark)	
b.	Define <i>n</i> and <i>s</i> on your CAS.		
	n(0) = 1.1 and $s(0) = 0$		
	So the length of the dam wall is 1.1 km.	(1 mark)	
	1.5		
c.	area = $(n(x) - s(x))dx$		
	0		
	=1.3591		
	$=1.36 \text{ km}^2$ (to 2 decimal places)		
d.	distance $OP = \sqrt{(1.5-0)^2 + (0.5-0)^2}$ = 1.5811	(1 mark)	

= 1.58 km (to 2 decimal places)(1 mark)

- e. The graph of y = s(x) is symmetrical about the line x = 0.5 between x = 0 and x = 1. So a line running in an east-west direction that passes through (0.2, s(0.2)) would also pass through the point (0.8, s(0.2)). So the length of barrier required is 0.6 km. (1 mark)
- **f.** We want the shaded area east of the barrier to equal the shaded area to the west.

length of barrier required = n(0.4975...) - s(0.4975...)= 1.4513... = 1.45 km (to 2 decimal places)

g.

Solve
$$\frac{dD}{dx} = 0$$
, for x (1 mark)
x = 0.4033... (1 mark)

Make sure that you have limited the domain of *D* to $x \in [0,1.5]$ if you hadn't initially put the domains of *n* and *s* into your CAS. maximum length = n(0.4033...) - s(0.4033...)= 1.4762...

$$=1.48 \text{ km (to 2 decimal places)}$$
(1 mark)

Let D = n(x) - s(x)

(1 mark)

Question 3 (10 marks)

The graph of $y = \sqrt{x+1} - 1$ needs to be translated 1 unit to the right and 1 unit up to a. become the graph of $v = \sqrt{x}$. So c = 1 and d = 1. (1 mark) b. The endpoint of the graph of *f* is (-1,-1). The endpoint of the image graph is (-2,-1). The graph of f has been dilated by a factor of 2 from the y-axis. So a = 2 and b = 1. (1 mark) $h(x) = \sqrt{x+n} - n$ c. Since $\sqrt{x+n} \ge 0$, then $\sqrt{x+n} - n > 0$ for n < 0. So h(x) > 0 for n < 0. (1 mark) $h(x) = \sqrt{x+n} - n$ d. Let $y = \sqrt{x+n} - n$ Swap x and y for inverse. $x = \sqrt{y+n} - n$ Solve for *y* by hand or CAS. $(x+n)^2 = v+n$ $v = (x+n)^2 - n$ So $h^{-1}(x) = (x+n)^2 - n$ (1 mark) $d_h = [-n,\infty)$ $r_h = [-n,\infty)$ So $d_{h^{-1}} = r_h$ $=[-n,\infty)$ (1 mark) Intermod 1Method 2Solve $h(x) = h^{-1}(x)$ for xSolve h(x) = x for xx = -n or x = 1 - nx = -n or x = 1 - ne. x = -n or x = 1 - nSince *h* and h^{-1} intersect on the line y = x, the points of intersection are (-n, -n) and (1-n, 1-n)(1 mark) (1 mark) Area enclosed by graphs of h and h^{-1} f. $= \int_{-n}^{n-n} (h(x) - h^{-1}(x)) dx \quad (\text{note that } h(x) > h^{-1}(x) \text{ for } x \in (-n, 1-n))$ $=\frac{1}{3}$ So area enclosed is a constant i.e. $\frac{1}{2}$. (1 mark) Solve $\frac{1}{q-0} \int_{0}^{q} x^2 dx = \frac{1}{1-0} \int_{0}^{1} \sqrt{x} dx$ for q. (1 mark) g. $q = \pm \sqrt{2}$, but q > 0So $q = \sqrt{2}$. (1 mark)

Question 4 (17 marks)

a. i.
$$0.2 + k + 0.1 + 0.4 = 1$$
 so $k = 0.3$ (1 mark)

ii.
$$E(X) = 10 \times 0.2 + 20 \times 0.3 + 40 \times 0.1 + 100 \times 0.4$$

= \$52

(1 mark)

iii.
$$sd(X) = \sqrt{Var(X)}$$

 $= \sqrt{E(X^2) - [E(X)]^2}$
Now $E(X^2) = 10^2 \times 0.2 + 20^2 \times 0.3 + 40^2 \times 0.1 + 100^2 \times 0.4$
 $= 4300$
So $sd(X) = \sqrt{4300 - 52^2}$
 $= 39.9499...$
 $= 40$ (to the nearest dollar)

(1 mark)

iv. Let the random variable R represent the distribution of the amount of the next four fishing licences purchased. $R \sim Bi(4, 0.5)$ ie p = 0.1 + 0.4= 0.5Method 1 using CAS (using CAS binomPdf(4,0.5,3))Pr(R = 3) = 0.25Method 2 by hand $\Pr(R=3) = {}^{4}C_{3}(0.5)^{3}(0.5)^{1}$ = 0.25(1 mark) b. i. Let the random variable Y represent the distribution of the weight, in kg, of Golden Perch fish that have been inspected. $Y \sim N(5.2, 0.4^2)$ Pr(Y > 5.5) = 0.22662...(using CAS normCdf $(5.5,\infty,5.2,0.4)$) = 0.2266 (to 4 decimal places) (1 mark) $(0.22662...)^5 = 0.0005978...$ ii. = 0.0006 (to 4 decimal places) (1 mark) iii. $\Pr(Y < m) = 0.2$ (using CAS invNorm(0.2, 5.2, 0.4)) *m* = 4.863351... Maximum weight is 4.8634 kg (to 4 decimal places). (1 mark) c.

i.

Define f(x) on your CAS.

$$E(X) = \int_{26}^{60} x \times f(x) \, dx$$
= 40.0424...
= 40.04 cm (to two decimal places)
(1 mark)

ii.
$$\int_{30}^{60} f(x) dx = 0.90141...$$

= 0.90 (to two decimal places) (1 mark)

iii.
$$Pr(X > 50 | X > 30)$$

$$= \frac{Pr(X > 50 \cap X > 30)}{Pr(X > 30)}$$

$$= \frac{Pr(X > 50)}{0.90141...}$$
 (from part c.ii.) (1 mark)

$$= 0.14323...$$

$$= 0.1432$$
(to four decimal places)

(1 mark)

(1 mark)

d. i. Let *W* represent the distribution of the number of anglers questioned who didn't have a licence. $W \sim \text{Bi}(25, 0.08)$ $\Pr(W \ge 2) = 0.60527...$ (using CAS_binomCdf(25, 0.08, 2, 25))

$$(W \ge 2) = 0.60527...$$
 (using CAS binomCdf (25, 0.08, 2, 25)
= 0.6053 (to four decimal places)
(1 mark)

ii.
$$Pr(\hat{P} < 0.1) = Pr\left(\frac{W}{n} < 0.1\right)$$

$$= Pr(W < 2.5)$$

$$= Pr(W \le 2) \qquad (since W is an integer)$$

$$= 0.67683... \qquad (using CAS binomCdf(25, 0.08, 0, 2))$$

$$= 0.6768 \qquad (to four decimal places)$$

(1 mark)

e. i. approximate confidence interval =
$$\left(\hat{p} - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$$
 (from the formula sheet)

Now $\frac{0.1092 + 0.1504}{2} = 0.1298$. Sample proportion is 0.1298.

(1 mark)

ii. The 95% confidence interval for this other state, (0.1092, 0.1504) does not contain the proportion of the original state which was 0.08.

(1 mark)

Question 5 (12 marks)

b.

c.

a. Define f on your CAS. Solve f(x) = 0 for x. x = a or x = 0x-intercepts are (a, 0) and (0, 0)

(1 mark)

Solve f'(x) = 0 for x. $x = \frac{2a}{3}$ or x = 0 (1 mark)

Since the graph of f is a negative cubic, the local maximum occurs to the right of the local minimum, and since a is a positive constant, then $\frac{2a}{3} > 0$, and so the local

 $f\left(\frac{2a}{3}\right) = \frac{4a^3}{27}$ Local maximum is $\left(\frac{2a}{3}, \frac{4a^3}{27}\right)$.

maximum occurs at $x = \frac{2a}{3}$.

(1 mark)

The graphs intersect when i. $-x^3 + ax^2 = ax$ $-x^{3} + ax^{2} - ax = 0$ $-x(x^2-ax+a)=0$ There is a solution when x = 0. Consider the quadratic equation. $x^2 - ax + a = 0$ $\Delta = (-a)^2 - 4 \times 1 \times a$ (discriminant) $=a^{2}-4a$ (1 mark) If there is just one point of intersection i.e. at x = 0, then we want the quadratic equation to have no solutions i.e. $\Delta < 0$. Solve $a^2 - 4a < 0$ for a 0 < a < 4So 0 < a < 4 for one point of intersection. (1 mark) ii. Method 1 From part **i**, there is one point of intersection at x = 0. For one more point of intersection, which would give a total of exactly two points of intersection, we require $\Delta = 0$. $a^2 - 4a = 0$ a(a-4)=0a=0 or a=4(1 mark) but a is a positive constant so reject a = 0. For exactly two points of intersection a = 4. (1 mark)

<u>Method 2</u> If a = 4, $-x(x^2 - 4x + 4) = 0$, so one solution is x = 0. (1 mark) For the quadratic factor, $\Delta = (-4)^2 - 4 \times 1 \times 4$ (the discriminant) = 0

so there is one more solution which gives a total of two solutions. (1 mark)

d. Both graphs pass through the origin. The graph of g will be a tangent to the graph of f when it touches the graph of f at one other point. In total, the graphs will intersect exactly twice. So from part **c. ii**, a = 4.

 $f(x) = -x^{3} + 4x^{2} \quad (\text{when } a = 4)$ $g(x) = 4x \quad (\text{when } a = 4)$ solve these two equations simultaneously for x, x = 0 or x = 2 $f(2) = 8 \quad (\text{when } a = 4)$ Point of tangency is (2,8).

(1 mark)

1. Solve
$$f(x) = g(x)$$
 for x using CAS.
Given that $a > 4$ and $r < s < t$, then
 $r = 0$, $s = \frac{a - \sqrt{a(a-4)}}{2}$ and $t = \frac{a + \sqrt{a(a-4)}}{2}$

a . a

(1 mark) – one correct value (1 mark) – all 3 correct values

ii. Draw a graph.

e.

