

2021 2021 P.O. Box 1180 Phone 03 9836 5021

info@theheffernangroup.com.au www.theheffernangroup.com.au

SECTION A – Multiple-choice answers

SECTION A – Multiple-choice solutions

Question 1

Define $p(x) = x^4 - 2x^3 - k$ on your CAS. Solve $p(3) = 15$ for k (ie using the remainder theorem) $k = 12$ The answer is B.

Question 2

For option A, maximal domain is $x \in R \setminus \{-1\}$. For option B, maximal domain is $x+1>0$ i.e. $x \in (-1, \infty)$. For option C, maximal domain is $x+1>0$ i.e. $x \in (-1, \infty)$. For option D, maximal domain is $x + 1 \ge 0$ i.e. $x \in [-1, \infty)$. For option E, maximal domain is $x \in (-\infty, \infty)$ i.e. $x \in R$. The answer is D.

Question 3

Method 1 – using CAS
Solve
$$
2\sin\left(3x + \frac{\pi}{6}\right) - \sqrt{3} = 0
$$
 for x.
 $x = \frac{(12k+1)\pi}{18}$ or $x = \frac{(4k+1)\pi}{6}, k \in \mathbb{Z}$
 $= \frac{(12k+3)\pi}{18}$

The answer is E.

MATHS METHODS 3 & 4

Question 3 (cont'd)

Method 2 - by hand.
$2 \sin \left(3x + \frac{\pi}{6}\right) - \sqrt{3} = 0$
$\sin \left(3x + \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$
$3x + \frac{\pi}{6} = 2k\pi + \sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$
$= 2k\pi + \frac{\pi}{3}$
$= 2k\pi + \frac{\pi}{6}$
$= \frac{12k\pi + \pi}{6}$
$= \frac{12k\pi + \pi}{6}$
$x = \frac{\pi(12k+1)}{18}$

\n $x = \frac{\pi(4k+1)}{18}$

\n $x = \frac{\pi(12k+3)}{18}$

The answer is E.

Question 4

For option A, $h(x) = \frac{1}{3} f(x+2)$, we have a dilation by a factor of $\frac{1}{3}$ from the *x*-axis so (1,−2) becomes $\left(1, -\frac{2}{3}\right)$ then a translation 2 units to the left, which gives $\left(-1, -\frac{2}{3}\right)$ which is not point *Q*. Reject option A.

For option B, $h(x) = 2f(x-3)$, we have a dilation by a factor of 2 from the *x*-axis so (1,–2) becomes (1,−4) then a translation 3 units to the right which gives (4,−4). Reject option B. For option C, $h(x) = 3f(x-2)$, we have a dilation by a factor of 3 from the *x*-axis so (1,-2) becomes (1,−6) then a translation 2 units to the right which gives (3,−6) which is the image point *Q* that is required.

Option D gives an image point of (1,−6) and option E gives an image point of (−1,−6). The answer is C.

Question 5

Do a quick sketch of $y = h(x)$.

For h^{-1} to exist, then *h* has to be 1:1. Since the local maximum and local minimum of the graph of $y=4x^3-12x+5$ occurs at $x = -1$ and at $x = 1$ respectively, then *h* will be 1:1 for $D = [-1, 0]$. The answer is B.

The average rate of change of *f* between $x = 0$ and $x = 4$ is given by

$$
\frac{f(4) - f(0)}{4 - 0} = \frac{16 - 0}{4} = 4
$$

The instantaneous rate of change of *f* at $x = a$ is given by $f'(a)$.

Solve $f'(a) = 4$ for a

$$
2a = 4
$$

$$
a = 2
$$

The answer is D.

Question 7

The graph of $y = g(x)$ must have

- a negative gradient for $x < 0$
- a zero gradient for $x = 0$
- a positive gradient for $x > 0$
- Option A has a positive gradient for *x* < 0.

Reject option A.

Option B has a negative gradient for $x < 0$, a zero gradient at $x = 0$ and a positive gradient for $x > 0$.

Also, as $x \to -\infty$, gradient $\to 0$ and as $x \to \infty$, gradient $\to 0$.

Option B could represent $y = g(x)$.

Option C can't because it has a sharp point at $x = 0$ and therefore the gradient at $x = 0$ is not defined.

Option D does not have a zero gradient at $x = 0$.

Option E has a positive gradient for $x < 0$ and a negative gradient for $x > 0$. The answer is B.

Question 8

Since *A* and *B* are independent, $Pr(A) \times Pr(B) = Pr(A \cap B)$ $p \times Pr(B) = p - q$ $Pr(B) = \frac{p-q}{q}$ *p*

The answer is A.

Question 9

Draw a diagram. $Pr(6.6 < X < 8.2) = Pr(-1 < Z < 3)$ Since this answer is not offered, look for an equivalent area under the bell curve, remembering that it is symmetrical about the line $Z = 0$. So $Pr(-1 < Z < 3) = Pr(-3 < Z < 1)$. This is offered in option A. The answer is A.

We are sampling from a small population of 10 balls. If $\hat{p} = 0.25$, then we are interested in one of the four balls in the sample being white.

So
$$
Pr(\hat{P} = 0.25) = \frac{{}^{2}C_{1} \times {}^{8}C_{3}}{{}^{10}C_{4}}
$$

= $\frac{8}{15}$

The answer is D.

Question 11

For
$$
f(x) = x+1
$$
,
\n $f(x^2) = x^2 + 1$ and $2f(x) = 2x+2$
\nReject option A.
\nFor $f(x) = \frac{1}{\sqrt{x}}$,
\n $f(x^2) = \frac{1}{x}$ and $2f(x) = \frac{2}{\sqrt{x}}$
\nReject option B.
\nFor $f(x) = e^{\frac{x^2}{2}}$,
\n $f(x^2) = e^{\frac{x^2}{2}}$ and $2f(x) = 2e^{\frac{x}{2}}$
\nReject option C.
\nFor $f(x) = \frac{1}{x-2}$,
\n $f(x^2) = \frac{1}{x^2-2}$ and $2f(x) = \frac{2}{x-2}$
\nReject option D.
\nFor $f(x) = \log_e(x)$,
\n $f(x^2) = \log_e(x^2)$ and $2f(x) = 2\log_e(x)$
\n $= \log_e(x^2)$
\nSo $f(x^2) = 2f(x)$

The answer is E.

5

Question 12

$$
\int_{2}^{7} g(x)dx = \int_{2}^{4} g(x)dx + \int_{4}^{7} g(x)dx
$$

\n
$$
6 = -1 + \int_{4}^{7} g(x)dx
$$

\n
$$
7 = \int_{4}^{7} g(x)dx
$$

\nSo
$$
\int_{4}^{7} (g(x)-1)dx = \int_{4}^{7} g(x)dx - \int_{4}^{7} 1dx
$$

\n
$$
= 7 - [x]_{4}^{7}
$$

\n
$$
= 7 - (7 - 4)
$$

\n
$$
= 4
$$

The answer is C.

Question 13

Note that
$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (f(x) - g(x)) dx = \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} (g(x) - f(x)) dx
$$
 and also
$$
\int_{\frac{5\pi}{6}}^{3\pi} (f(x) - g(x)) dx = \int_{\frac{3\pi}{2}}^{13\pi} (g(x) - f(x)) dx
$$

So total area required

$$
\frac{\frac{\pi}{2}}{\int_{\frac{\pi}{6}}^{2}}(f(x)-g(x))dx + \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}}(g(x)-f(x))dx + \int_{\frac{5\pi}{6}}^{\frac{3\pi}{2}}(f(x)-g(x))dx + \int_{\frac{3\pi}{2}}^{13\pi}(g(x)-f(x))dx
$$

= $2\int_{\frac{\pi}{2}}^{6}(g(x)-f(x))dx + 2\int_{\frac{3\pi}{2}}^{13\pi}(g(x)-f(x))dx$

The answer is B.

Method 1 – using area of triangles
\nsigned area
$$
= \frac{1}{2} \times 16p^2 - \frac{1}{2} \times 2p^2
$$

\n $= 7p^2$
\naverage value $= \frac{7p^2}{5p}$
\n $= \frac{7p}{5}$
\nThe answer is C.

Method 2 – using formula
\naverage value =
$$
\frac{1}{2p - 3p} \int_{-3p}^{2p} f(x) dx
$$
\n
$$
= \frac{1}{5p} \left(\int_{-3p}^{-p} (2x + 6p) dx + \int_{-p}^{2p} (-2x + 2p) dx \right)
$$
\n
$$
= \frac{7p}{5}
$$

Note that the left hand branch of the graph has the rule $y = 2x + 6p$ and the right hand branch has the rule $y = -2x + 2p$. (Use the gradient formula $m = \frac{y_2 - y_1}{2}$ 2 λ_1 $m = \frac{y_2 - y}{ }$ $=\frac{y_2 - y_1}{x_2 - x_1}$ and the straight line formula $y - y_1 = m(x - x_1)$ to find these.) The answer is C.

Just out of interest, what the answer means graphically is that the area enclosed above the line $y = \frac{7p}{5}$ 5 between function *f* and between $x = -3p$ and $x = 2p$ is equal to the area enclosed below the line $y = \frac{7p}{5}$ 5 between the function *f* and between $x = -3p$ and $x = 2p$.

In other words in the diagram below, the big triangle above the line $y = \frac{7p}{5}$ is equal in area to the sum of the areas of the two smaller triangles below the line $=$ $\frac{7p}{5}$.

$$
E(\hat{P}) = p \qquad \text{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}
$$

$$
= 0.4 \qquad \qquad = \sqrt{\frac{0.4 \times 0.6}{24}}
$$

$$
= 0.1
$$

So mean = 0.4 and standard deviation = 0.1 . The answer is A.

Question 16

Since *m* is the median,
$$
\int_{0}^{m} \frac{3}{28} (1 + \sqrt{x}) dx = 0.5
$$

$$
\int_{0}^{m} \frac{3}{28} (1 + \sqrt{x}) dx = \frac{m(2\sqrt{m} + 3)}{28}
$$
using CAS
So
$$
\frac{m(2\sqrt{m} + 3)}{28} = 0.5
$$

$$
3m + 2\sqrt{m^3} - 14 = 0
$$

The answer is C.

Question 17

The graph of *f* is shown. The point (0,−1) lies on this graph.

A couple of tangents are drawn to the graph as shown. The *y*-intercept of these two tangents is less than –1.

y

The horizontal tangent shown, has a *y*-intercept $of-1.$ This is the maximum possible value of the *y*-intercept i.e. of *c*. The answer is B.

-1

 $f(g(x)) = \sqrt{x^2 - 2x}$ Note that $f(g(x))$ is defined because $r_g = [0, \infty)$ and $d_f = [0, \infty)$ i.e. $r_g \subseteq d_f$ So $d_{f(g(x))} = d_g$ $= (-\infty, 0]$ Do a quick sketch of $f(g(x))$ to find the range.

 $r_{f(g(x))} = [0, \infty)$ Option B offers this combination. The answer is B.

Question 19

A possible sketch is shown.

$$
g(-a) = \frac{1}{-2a} + b
$$

So the left endpoint of the left hand branch of the graph of *g* occurs at $\left(-a, b-\frac{1}{2}\right)$ 2*a* $\left(-a, b-\frac{1}{2a}\right)$.

$$
g(2a) = \frac{1}{a} + b
$$

So the right endpoint of the right hand branch of the graph of *g* occurs at $\left(2a, b+\right)$ *a* $\left(2a, b+\frac{1}{a}\right)$.

$$
r_g = \left(-\infty, b - \frac{1}{2a}\right] \cup \left[b + \frac{1}{a}, \infty\right)
$$

The answer is F

The answer is E.

The first three possible graphs of *f* shown above (on the left hand side) are all when *f* is a positive cubic i.e. the minimum turning point lies to the right of the maximum turning point. The transformed graphs for each of these graphs of *f* are shown to their right i.e. the graph of *g*.

The transformation from *f* to *g* involves

Question 20

- a dilation by a factor of 2 from the *y*-axis
- a reflection in the *x*-axis
- a translation 1 unit to the right.

One of these graphs of *g* has a minimum turning point which occurs at a point where $1 < x < 3$.

These values are not offered in the answers. The other possible graph of *f* is shown below.

This graph shows the graph of a negative cubic i.e. the minimum turning point lies to the left of the maximum turning point.

The transformed graph, *g*, has a minimum turning point occurring at a point where $x > 3$. The answer is E.

SECTION B

Question 1 (10 marks)

a. Find the *x*-coordinate of the maximum turning point. Solve $f'(x) = 0$ for x using CAS.

$$
x = \frac{3}{e}
$$
 (1 mark)

The graph of *f* is strictly decreasing for $x \in \left| \frac{3}{x} \right|$ *e* $\left| \frac{3}{2} \right|$,∞ $\begin{bmatrix} \cdot \end{bmatrix}$ $\left(\right)$. **(1 mark)**

b.
$$
f'\left(\frac{3}{\sqrt{e}}\right) = -\frac{1}{2}
$$
 (1 mark)

$$
\tan(\theta) = \frac{1}{2}
$$

$$
\theta = \tan^{-1}\left(\frac{1}{2}\right)
$$

$$
= 0.4636...
$$

$$
= 26.5650...
$$

2 θ

1

So the tangent makes an angle of $180^{\circ} - 26.5650...^{\circ} = 153.4349...^{\circ}$ or 153° (to the nearest degree) with the positive direction of the *x*-axis. **(1 mark)**

d. The tangent at
$$
x = \frac{3}{\sqrt{e}}
$$
 has a slope of $-\frac{1}{2}$.
\nSo the tangent at $x = a$ has a slope of 2 (ie the negative reciprocal).
\nSolve $f'(x) = 2$ for x.
\n $x = \frac{3}{e^3}$
\nSo $a = \frac{3}{e^3}$.
\n**e.** P is the point $(p, f(p))$ i.e. $\begin{pmatrix} p & -p \log(\frac{p}{e}) \end{pmatrix}$.

e. *P* is the point
$$
(p, f(p))
$$
 i.e. $\left(p, -p \log_e \left(\frac{p}{3}\right)\right)$.
Equation of tangent at *P* is $y = p - (\log_e(p) - \log_e(3) + 1)x$ using CAS. (1 mark)
The *y*-intercept of this tangent is *p*. (1 mark)

- **f.** From part **e.**, the *y* intercept of the tangent at $x = p$ is *p*. So the *y*-intercept of the tangent at $x = \frac{3}{4}$ *e* is $\frac{3}{7}$ *e* . The tangent perpendicular to this tangent occurs at $x = a$ i.e. at $x = \frac{3}{e^3}$ from part **d.**
	- So the *y*-intercept of this perpendicular tangent is $\frac{3}{e^3}$. *^e*³ . **(1 mark)**

The distance between the *y* – intercepts is
$$
\frac{3}{\sqrt{e}} - \frac{3}{e^3} = \frac{3e^{\frac{5}{2}} - 3}{e^3} = \frac{3(e^{\frac{5}{2}} - 1)}{e^3}
$$

(1 mark)

3 *e*

Question 2 (11 marks)

\n- **a.** The right endpoint of both the function *n* and the function *s* occurs at *P*(1.5, 0.5).
\n- **b.** Define *n* and *s* on your CAS.
$$
n(0) = 1.1
$$
 and $s(0) = 0$ So the length of the dam wall is 1.1 km. (1 mark) \n
\n- **c.** area = $\int_{0}^{1.5} (n(x) - s(x)) dx$ = 1.3591... $= 1.36 \text{ km}^2$ (to 2 decimal places)
\n- **d.** distance $OP = \sqrt{(1.5 - 0)^2 + (0.5 - 0)^2}$ = 1.5811... $= 1.58 \text{ km}$ (to 2 divisible by 2).
\n

 $= 1.58$ km (to 2 decimal places) **e.** The graph of $y = s(x)$ is symmetrical about the line $x = 0.5$ between $x = 0$ and $x = 1$. So a line running in an east-west direction that passes through $(0.2, s(0.2))$ would **(1 mark)**

also pass through the point (0.8,*s*(0.2)). So the length of barrier required is 0.6 km. **(1 mark)**

f. We want the shaded area east of the barrier to equal the shaded area to the west.

$$
y = n(x)
$$
\n
$$
y = n(x)
$$
\n
$$
P(1.5, 0.5)
$$
\n
$$
y = s(x)
$$
\n
$$
y = s(x)
$$
\nSolve
$$
\int_{m}^{1.5} (n(x) - s(x))dx = \int_{0}^{m} (n(x) - s(x))dx
$$
 for *m*.\n
$$
m = 0.4975...
$$
\n(1 mark)

length of barrier required = $n(0.4975...) - s(0.4975...)$ $=1.4513...$ $= 1.45$ km (to 2 decimal places)

g. Let $D = n(x) - s(x)$

Solve
$$
\frac{dD}{dx} = 0
$$
, for x
\n $x = 0.4033...$ (1 mark)

Make sure that you have limited the domain of *D* to $x \in [0,1.5]$ if you hadn't initially put the domains of *n* and *s* into your CAS. maximum length = $n(0.4033...) - s(0.4033...)$ 1.4762

$$
= 1.4762...
$$

= 1.48 km (to 2 decimal places) (1 mark)

(1 mark)

Question 3 (10 marks)

a. The graph of $y = \sqrt{x+1} - 1$ needs to be translated 1 unit to the right and 1 unit up to become the graph of $y = \sqrt{x}$. So $c = 1$ and $d = 1$. **(1 mark) b.** The endpoint of the graph of *f* is $(-1,-1)$. The endpoint of the image graph is $(-2,-1)$. The graph of *f* has been dilated by a factor of 2 from the *y*-axis. So $a = 2$ and $b = 1$. **(1 mark) c.** $h(x) = \sqrt{x+n} - n$

c.
$$
n(x) = \sqrt{x + n} - n
$$

\nSince $\sqrt{x + n} \ge 0$, then $\sqrt{x + n} - n > 0$ for $n < 0$.
\nSo $h(x) > 0$ for $n < 0$.
\n**d.**
$$
h(x) = \sqrt{x + n} - n
$$

\nLet $y = \sqrt{x + n} - n$
\nSwap *x* and *y* for inverse.
\n $x = \sqrt{y + n} - n$
\nSolve for *y* by hand or CAS.
\n $(x + n)^2 = y + n$
\n $y = (x + n)^2 - n$
\nSo $h^{-1}(x) = (x + n)^2 - n$
\n $d_h = [-n, \infty)$
\n $r_h = [-n, \infty)$
\nSo $d_{h^{-1}} = r_h$

$$
=[-n,\infty)
$$

(1 mark)

Since *h* and h^{-1} intersect on the line $y = x$, the points of intersection are (−*n*,−*n*) and (1− *n*,1− *n*) **(1 mark) (1 mark) f.** Area enclosed by graphs of *h* and h^{-1} 1 $(h(x) - h^{-1}(x)) dx$ (note that $h(x) > h^{-1}(x)$ for $x \in (-n, 1 - n)$) 1 3 *n n* $h(x) - h^{-1}(x) dx$ (note that $h(x) > h^{-1}(x)$ for $x \in (-n, 1 - n)$ − $\sigma^{-1}(x)$) dx (note that $h(x) > h^{-1}$ − $= \int (h(x) - h^{-1}(x)) dx$ (note that $h(x) > h^{-1}(x)$ for $x \in (-n, 1 -$ = So area enclosed is a constant i.e. $\frac{1}{2}$ 3 . **(1 mark)**

g. Solve
$$
\frac{1}{q-0} \int_{0}^{q} x^2 dx = \frac{1}{1-0} \int_{0}^{1} \sqrt{x} dx
$$
 for q .
\n $q = \pm \sqrt{2}$, but $q > 0$
\nSo $q = \sqrt{2}$. (1 mark)

Question 4 (17 marks)

a. i.
$$
0.2 + k + 0.1 + 0.4 = 1
$$
 so $k = 0.3$ (1 mark)

ii.
$$
E(X) = 10 \times 0.2 + 20 \times 0.3 + 40 \times 0.1 + 100 \times 0.4
$$

= \$52

(1 mark)

iii.
$$
sd(X) = \sqrt{Var(X)}
$$

\n
$$
= \sqrt{E(X^{2}) - [E(X)]^{2}}
$$

\nNow $E(X^{2}) = 10^{2} \times 0.2 + 20^{2} \times 0.3 + 40^{2} \times 0.1 + 100^{2} \times 0.4$
\n
$$
= 4300
$$

\nSo $sd(X) = \sqrt{4300 - 52^{2}}$
\n
$$
= 39.9499...
$$

\n
$$
= 40 \text{ (to the nearest dollar)}
$$

\n(1 mark)

iv. Let the random variable *R* represent the distribution of the amount of the next four fishing licences purchased. ie $p = 0.1 + 0.4$ $R \sim \text{Bi}(4, 0.5)$

$$
= 0.5
$$

Method 1 using CAS

$$
Pr(R = 3) = 0.25
$$
 (using CAS binomPdf(4,0.5,3))

Method 2 by hand

$$
Pr(R = 3) = {}^{4}C_{3}(0.5)^{3}(0.5)^{1}
$$

= 0.25

(1 mark)

b. i. Let the random variable *Y* represent the distribution of the weight, in kg, of Golden Perch fish that have been inspected. $Y \sim N(5.2, 0.4^2)$

$$
Pr(Y > 5.5) = 0.22662...
$$
 (using CAS normCdf(5.5, ∞ , 5.2, 0.4))
= 0.2266 (to 4 decimal places)

(1 mark)

ii.
$$
(0.22662...)^5 = 0.0005978...
$$

= 0.0006 (to 4 decimal places)

(1 mark)

iii. $Pr(Y < m) = 0.2$ (using CAS invNorm(0.2,5.2,0.4)) *m* = 4.863351...

Maximum weight is 4.8634 kg (to 4 decimal places).

(1 mark)

c. i. Define $f(x)$ on your CAS.

$$
E(X) = \int_{26}^{60} x \times f(x) dx
$$

= 40.0424...
= 40.04 cm (to two decimal places) (1 mark)

ii.
$$
\int_{30}^{60} f(x) dx = 0.90141...
$$

= 0.90 (to two decimal places) (1 mark)

iii.
$$
Pr(X > 50 | X > 30)
$$

=
$$
\frac{Pr(X > 50 \cap X > 30)}{Pr(X > 30)}
$$

=
$$
\frac{Pr(X > 50)}{0.90141...}
$$
 (from part c.ii.) (1 mark)
= 0.14323...
= 0.1432 (to four decimal places)

(1 mark)

(1 mark)

d. i. Let *W* represent the distribution of the number of anglers questioned who didn't have a licence. $W \sim \text{Bi}(25, 0.08)$ (using CAS binomCdf $(25, 0.08, 2, 25)$) (to four decimal places) $Pr(W \ge 2) = 0.60527...$ $= 0.6053$

(1 mark)

$$
\begin{aligned}\n\text{i.} \qquad & \Pr\left(\hat{P} < 0.1\right) = \Pr\left(\frac{W}{n} < 0.1\right) \\
& = \Pr(W < 2.5) \\
& = \Pr(W \le 2) \qquad \text{(since } W \text{ is an integer)} \\
& = 0.67683... \qquad \text{(using CAS binomCdf}(25, 0.08, 0, 2) \\
& = 0.6768 \qquad \text{(to four decimal places)}\n\end{aligned}
$$

(1 mark)

e. i. approximate confidence interval
$$
=
$$
 $\left(\hat{p} - z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right)$ (from the formula sheet)

Now $\frac{0.1092 + 0.1504}{2} = 0.1298$. Sample proportion is 0.1298.

(1 mark)

ii. The 95% confidence interval for this other state, (0.1092, 0.1504) does not contain the proportion of the original state which was 0.08.

(1 mark)

Question 5 (12 marks)

a. Define *f* on your CAS. Solve $f(x) = 0$ for x. $x = a$ or $x = 0$ *x*-intercepts are $(a,0)$ and $(0, 0)$

(1 mark)

b. Solve $f'(x) = 0$ for x. $x = \frac{2a}{2}$ 3 or $x = 0$ (1 mark)

Since the graph of *f* is a negative cubic, the local maximum occurs to the right of the local minimum, and since *a* is a positive constant, then $\frac{2a}{2} > 0$ 3 $\frac{a}{b} > 0$, and so the local

 $f\left(\frac{2a}{2}\right)$ 3 $\left(\frac{2a}{3}\right) = \frac{4a^3}{27}$ 27 Local maximum is $\left(\frac{2a}{3}, \frac{4a^3}{27}\right)$ 27 $\left(\cdot\right)$ $\left(\frac{1}{2}\right)$ \mathcal{L} \int

maximum occurs at $x = \frac{2a}{3}$.

(1 mark)

c. i. The graphs intersect when $-x^3 + ax^2 = ax$ $-x^3 + ax^2 - ax = 0$ $-x(x^2 - ax + a) = 0$ There is a solution when $x = 0$. Consider the quadratic equation. $x^2 - ax + a = 0$ $\Delta = (-a)^2 - 4 \times 1 \times a$ (discriminant) $= a^2 - 4a$ If there is just one point of intersection i.e. at $x = 0$, then we want the quadratic equation to have no solutions i.e. $\Delta < 0$. Solve $a^2 - 4a < 0$ for *a* $0 < a < 4$ So $0 < a < 4$ for one point of intersection. **(1 mark) ii.** Method 1 From part **i.**, there is one point of intersection at $x = 0$. For one more point of intersection, which would give a total of exactly two points of intersection, we require $\Delta = 0$. $a^2 - 4a = 0$ $a(a-4)=0$ $a=0$ or $a=4$ but *a* is a positive constant so reject $a = 0$. For exactly two points of intersection $a = 4$. **(1 mark) (1 mark) (1 mark)** Method 2 If $a = 4$, $-x(x^2 - 4x + 4) = 0$, so one solution is $x = 0$. For the quadratic factor, $\Delta = (-4)^2 - 4 \times 1 \times 4$ (the discriminant) $=0$ **(1 mark)**

so there is one more solution which gives a total of two solutions. **(1 mark)**

d. Both graphs pass through the origin. The graph of *g* will be a tangent to the graph of *f* when it touches the graph of *f* at one other point. In total, the graphs will intersect exactly twice. So from part **c. ii**, $a = 4$.

 $f(x) = -x^3 + 4x^2$ (when *a* = 4) $g(x) = 4x$ (when $a = 4$) solve these two equations simultaneously for *x*, $x = 0$ or $x = 2$ $f(2) = 8$ (when $a = 4$) Point of tangency is (2,8).

(1 mark)

e. i. Solve
$$
f(x) = g(x)
$$
 for x using CAS.
Given that $a > 4$ and $r < s < t$, then
 $r = 0$, $s = \frac{a - \sqrt{a(a-4)}}{2}$ and $t = \frac{a + \sqrt{a(a-4)}}{2}$

2 2 **(1 mark)** – one correct value **(1 mark)** – all 3 correct values

ii. Draw a graph.

