	••••		••••		••••				
--	------	--	------	--	------	--	--	--	--

Online & home tutors Registered business name: itute ABN: 96 297 924 083

Mathematical Methods

2021

Trial Examination I (1 hour)

Instructions

Answer **all** questions.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale.

Question 1

Solve the following equations for *x*.

a.
$$(x-1)^{\frac{2}{3}} - (x-2)^{\frac{2}{3}} = 0$$

2 marks

b. $e^{4x-4} = 2e^{2x-2} + 3$

Consider the rule of function f,
$$f(x) = \frac{(x-1)(x^3+2x^2+2x+1)}{x^2-1}$$
.

a. Express the rule in simplest form.

b. Find f'(x).

c. Sketch the graph of f in the interval [-2, 3]. Label typical points with coordinates.

3 marks

2 marks

1 mark

Random variable *X* has probability distribution Bi(n, p) and $Pr(X = 1) = (1 - p)^{n-2}$, p < 1. Find the possible values of *n* and the value(s) of *p* in terms of *n*.

3 marks

Question 4

Five samples of size *n* are taken from a large population. The 70% and 90% confidence intervals for sample proportion \hat{P} are (0.3896, 0.4104) and (0.3836, 0.4164) respectively.

a. Find $\Pr(0.3836 < \hat{P} < 0.4104 | \hat{P} > 0.3836)$. 2 marks

b. Given $Pr(-1.04 < Z < 1.04) \approx 0.70$, estimate the value of *n* to the nearest hundred.

The outdoor air temperature (in $^{\circ}C$) over a period of 24 hours is given by

$$T(t) = 8 - 5\sin\left(\pi\left(\frac{t}{12} - \frac{1}{6}\right)\right), t \in [0, 24].$$

a. Sketch a graph of the outdoor temperature T(t).

b. Determine the average temperature over the 24 hour period. 1 mark

c. Calculate the average rate of change in temperature from its minimum to its maximum.

1 mark

d. Over the 24 hour period, $T > \alpha$ for 20 hours. Determine the value of α . 2 marks

e. If you put your clock forward an hour for daylight saving, *T* in terms of daylight saving time *t* over the same 24 hour period can be expressed as $T(t) = 8 - 5\sin\left(\pi\left(\frac{t}{12} + b\right)\right)$. Find the value of *b*.

The following diagram shows a large water tank with one section on top of a larger section. Both sections have the same height of 2 metres.

The top and the base planes are parallel, and they consist of two and three congruent equilateral triangles respectively. The area of each triangle is $\sqrt{3}$ m².

Initially (t = 0) the tank is full. At time $t \ge 0$ seconds the depth of water is h metres.

a. Write a piecewise function for V(h) m³ in simplest factorised form. 2 marks

b. Water is drained at a constant rate of $\frac{1}{500}$ m³ per second.

Find $\frac{dh}{dt}$ in m s⁻¹ when h > 2. 2 marks

Given $f(x) = \log_e x$ and $g(x) = \sqrt{ax+b}$ such that f(e) = g(e) and f'(e) = g'(e),

a. find the values of a and b

2 marks

b. and show that
$$g'(x) > f'(x)$$
 for $x \in \left(\frac{e}{2}, e\right) \cup (e, \infty)$. 3 marks

Question 8

Function f(x) is odd, periodic and differentiable for $x \in R$.

The period of f is 7, f(-2)=2 and $f'(-2)=\frac{1}{3}$.

- a. Find the value of f(-5). 1 mark
- b. Find the value of f'(-5).
- c. Find the value of $\int_{-5}^{9} f(x) dx$. 1 mark

1 mark

© itute 2020

8

Question 9 Let $f(x) = e^x + \log_e x$, b = f(a) and $g(x) = f^{-1}(x)$.

a. State the maximal domain of f(x).

1 mark

b. Find g'(b) in terms of a.

End of Exam