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Question 1  Answer D 

12cos
3 2
xy  = − − 

 
 

The amplitude is 2. 

The period is 2 61
3

π π= . 

Question 2  Answer B 

: , ( )
1

1 3
g D R g x

x
→ =

+
 has range [ )0.5,  0.2− − . 

Solve 
1 0.5

1 3x
= −

+
 and 

1 0.2
1 3x

= −
+

 for x. 

1x = −  and 2x = −  

The coordinates of the endpoints are ( )2, 0.2− −  and ( )1, 0.5− − . 

g is a decreasing function. 

The domain is ( ]2,  1− −  

 

Question Answer Question Answer 
1 D 11 D 
2 B 12 E 
3 A 13 E 
4 E 14 B 
5 E 15 C 
6 C 16 B 
7 A 17 C 
8 C 18 B 
9 D 19 A 

10 A 20 C 
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Question 3  Answer A 

5 3 2( ) 1f x x mx nx= + − −  

Solve ( 2) 0f − =  and (1) 5.f =  

 

 

Question 4  Answer E 

2nx y m− =   
2 6 1n x y m+ = +  

The gradients need to be the same for no solutions. 
Using ratios 

22
6

n n= −  

2 3n n− =   
( 3) 0n n− + =   
0n =  or  3n = −   

1
3 1

m
m

− =
+

 for infinite number of solutions 

1 3m m+ = −  
1
4

m = −   
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So, for no solutions 
1 10,  \  or 3,  \
4 4

n m R n m R   = ∈ − = − ∈ −   
   

 

OR 
The gradients need to be the same for no solutions and the y-intercepts need to be different. 

2nx y m− =   

2 2
nx my = −   

2 6 1n x y m+ = +  
2 1

6 6
n x my − +

= +   

The gradients need to be the same for no solutions. 
2

2 6
n n
= −  

2 3n n− =   
( 3) 0n n− + =   
0n =  or  3n = −   

1
2 6
m m +

− =  for infinite number of solutions 

3 1m m− = +  
1
4

m = −  

So for no solutions 
1 10,  \  or 3,  \
4 4

n m R n m R   = ∈ − = − ∈ −   
   

 

 

Question 5  Answer E 

 

2 3
( 1)

ay
x

= −
−

 

Solve 
( )25 3
1.5 1

a
= −

−
 for a. 

2a =  
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2
2 3

( 1)
y

x
= −

−
 

Inverse swap x and y and solve for y. 

2
2 3

( 1)
x

y
= −

−
  

21
3

y
x

= ±
+

 

1 2( ) 1
3

f x
x

− = +
+

 

 

 

 

  



2021 MAV Mathematical Methods Trial Exam 2, Solutions  5 

 
© The Mathematical Association of Victoria, 2021 
 

Question 6  Answer C 

.  

Maximum rate of change is when the gradient is at its maximum. 
One method is to look where the 2nd derivative ''( ) 0f x = , which gives the maximum and minimum 
gradient points. Remember that the gradient does not exist at an end-point.  
 

 Note 20,
3

x x π
= = are minimums 

The maximum is at 
3

x π
= . 

OR 
Sketch a graph of the derivative, '( ) 6cos(3 )f x x= −  

 
This shows that the maximum rate of change is at 

3
x π
=  only. 

 

Question 7  Answer A 

: 0, , ( ) tan( )
2

f R f x xπ → = 
 and ( ) 2 1g x x= +  over its maximal domain. 

For the composite function ( ) ( ( ))h x g f x=  to exist the range of f  must be a subset or equal to the 
domain of g . 
Is the range of f ⊆  domain of g ? 

Is [ ) 10, ,
2

 ∞ ⊂ − ∞ 
? Yes true. 

( ): , ,  ( ) 2sin 3 3
3

f R f x xπ π − → = − +  
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So, the domain of ( ( ))g f x is the same as the domain of f which is 0,
2
π 
 

. 

Rule of ( ( ))g f x = 2 tan( ) 1x +  

 
 

Answer: ( ) 2 tan( ) 1h x x= +  and 0,
2

x π ∈  
  

 

Question 8  Answer C 

Function y x= −  transformed to the image rule 13 1
4

y x= − + −   

Transformations, in an appropriate order are 
 

• a translation of 1 unit left, giving 1 1y x= − +  

• a dilation by a factor of 1
3

 from the y-axis, giving 2 3 1y x= − +  

• a translation of 1
4

 of a unit down, giving 3
13 1
4

y x= − + −  

 

Question 9  Answer D 

3
 

0
x

T
y

   
=   

   
  

0 1
2 0

x
y

    
+    −     

 is applied to 4y x= −   

Expanding matrices gives 1

1

3 1
2

xx
y y
+   

=   −   
 

1
3

xx
′ −

=  and 
2

yy
′

=
−

 

Substitute in the equation 4y x= −  
41

2 3
y x′ ′ − = − −  

 

412
3

xy
′ − ′ =  

 
 

Matching Answer D: ( )42 1
81

x
y

−
=  

Question 10  Answer A 
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Area enclosed equals upper ( ) 3 4xy g x e= = +  minus lower 2( ) xy f x e= =  

From 0x =  to point of intersection at 2ln(2) ln(4)x = =  

 

Area = ( )
2log (2)

l)

( ) ( )
e

g x f x dx−∫  

Swapping limits gives ( )
0

log (4)

( ) ( )
e

f x g x dx−∫  

 

Question 11  Answer D 

1( ) 2
2

x
xg x −= =  

1
1 1 1(1 ) 2 ( )

2 22
x

xg x g x−− = = × = −  

 

Question 12  Answer E 

2 2 11 1
2

x xe e+ −× =   

 

Using Change of base answer equals 2

2 2

log (2) 1 1 1
3log ( ) 3 3log ( ) 3

x
e e

= − = −  

  



2021 MAV Mathematical Methods Trial Exam 2, Solutions  8 

 
© The Mathematical Association of Victoria, 2021 
 

Question 13  Answer E 

( )( ) 3log 2 2ef x x= − −  has vertical asymptote at 1x =  

Inverse 1f −  is an exponential function with a horizontal asymptote at 1y =   

Possible answers are D or E 

y-intercept of 1f −  sits between 1y =  and 2y =  

  
Matching Answer E 

 

Question 14  Answer B 

The length of the pieces of wire are 20 4x−  cm and 4x  cm. 

Rectangle 

Perimeter is 20 4x−  cm 

6 20 4w x= − , where w is the width of the rectangle 

10 2 20 4,  
3 3

x xw l− −
= =  

tan
10 2 20 4

3 3rec gle
x xA − −  =   

  
 

2
tan

10 2 20 4
3 3rec gle square

x xA A x− −  + = +  
  

 

For the minimum area 40
7

x = . 

Minimum area is 200
17

 cm2 
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OR 
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Question 15  Answer C 

 
2( ) 5 4y g x x= = +  

Left-endpoint rectangles 

1 1 2(0)
3 3 3LA g g g    = + +    

    
 

Right-endpoint rectangles 

1 1 2 (1)
3 3 3RA g g g    = + +    

    
 

Average 

1 2(0) 2 2 (1)
3 3

3 2

g g g g   + + +   
   =

×
 

Percentage of exact area 

( )
1

0

1 2(0) 2 2 (1)
3 3 100% 101.6%

3 2 ( )

g g g g

g x dx

   + + +   
   = × =

× ∫
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Question 16  Answer B 

Average value ( )
3

3

1 ( )
6

h x dx
−

= ∫  

The branches are symmetrical. 

Average value ( ) ( )
0 0

3 3

2 1( ) ( )
6 3

h x dx h x dx
− −

= =∫ ∫  

 

 

 

Question 17  Answer C 

( ) 220 20Pr
859 859

X x x
x

= = −  

( ) ( ) ( )Pr 1 Pr 4 Pr 5X X X= − + = + = −  

40 315 504 1
859 859 859

= + + =  
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Question 18   Answer B 

(0.162, 0.238) 

 

  

 

Question 19   Answer A 

Solve 2 2.527...µ
σ
−

= −  and 4.8 2.563...µ
σ
−

=  

3.39,  0.55µ σ= =  

21 3.39
2 0.551( )

0.55 2

x

f x e
π

− −  
 =  
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Giving 2.527...and  2.563...z z= − =  

 
 

Question 20  Answer C 

2~ Bi ,
5

p n 
 
 

, 3~ Bi ,
5

f n 
 
 

 

Examples 

0 03 2 2 3( ) (0)
5 5 5 50

n nn n
f n p

n

          = = =                       
 

1 13 2 2 3( 1) (1)
5 5 5 51 1

n nn n
f n p

n

− −         − = = =                  −   
 

In general 

3 2 2 3( ) ( )
5 5 5 5

m n m n m mn n
f m p n m

m n m

− −          = = − =                    −   
 

( ) ( )f m p n m= −  
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SECTION B 

Question 1 

a. 2 1
2 3

x
x
+
−

  

2 3 3 1
2 3

x
x

− + +
=

−
  

2 3 4
2 3
x

x
− +

=
−

  

2 3 4
2 3 2 3

x
x x
−

= +
− −

 

41
2 3x

= +
−

 

giving 1a = and 4b =    1M Show that 

2 1 4( ) 1
2 3 2 3

xf x
x x
+

= = +
− −

 

b.i. By inspection the asymptotes are 1y =  and 3
2

x = .    1A 

   

ii. domain 3\
2

R  
 
 

, range { }\ 1R   2A        

 

1 1
1 1 2 1: , ,  ( )
2 6 2 3

xf R f x
x
+ − → =  − 

, ( )1 1
1 6( )
2 11

xy f f x
x
−

= =
−

 

 
c. For ( )1 1( )f f x  to exist test range 1f ⊆ domain 1f . 

range 
1 1 1,0 ,
2 2 6

   − ⊂ −      
   1A 

 

d.i. 10,
11

 − 
 

 and 1 ,0
6

 
 
 

   2A 
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ii. shape  1A 

axial intercepts and endpoints 1 1,
2 3

 − − 
 

 10,
11

 − 
 

 and 1 ,0
6

 
 
 

  1A 

  
e.i. Solve ( )g x x=  

5 33
4

x −
=   1A 

  

Area ( )
1 1 1
6 6 6

5 33 5 33 5 33
4 4 4

1 6 6 1( )
2 11 2 11

x xx g x dx x dx x dx
x x− − −

− −   = − = − = +   − −   ∫ ∫ ∫     1A (any) 
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ii. 0.030 correct to three decimal places   1A 
 

 
 
iii. 0.030 correct to three decimal places   1H 
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Question 2 

( ) sin( )ktd t e kt−=  

a. ( )' (cos( ) sin( ))ktd t ke kt kt−= −   1A 

  

b.i. Solve ( )' (cos( ) sin( )) 0ktd t ke kt kt−= − =   
gives 0ktke− =  no solution.      1M 
and (cos( ) sin( )) 0kt kt− =   
cos( ) sin( )kt kt=  
cos( ) sin( )
cos( ) cos( )

kt kt
kt kt

=  

giving tan( ) 1kt =       1M Show that 
 

ii. ( )' 0,  tan( ) 1d t kt= =    

giving general solution  
4

t n
k k
π π

= +  where ,  {0}k R n Z+ +∈ ∈ ∪    1A 

  

 
 

iii. 
4

t n
k k
π π

= +  

For ( )2: 0, , sin( )ktd R d t e kt
k

−  → =  
 

Letting 0n = gives the local maximum stationary point at  
4

t
k
π

=    1A 

 

 

Let [ ] ( ) 0.2: 0,10 , 10 sin(0.2 )t
j jd R d t e t−→ =   
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c. Solve ( ) 0jd t′ =   

At 
5
4

t π
=  minutes      1A 

maximum amount 45 2e
π

−
=   mg/litre    1A 

                                                                                      
 

d. Average rate of change, for the interval [0, 10] 

( ) ( )10 0
10 0

j jd d−
−

   1M 

0.123=  mg/L/min correct to three decimal places 1A  

                                                                                     
 

 

 

e. Solve 0.2 0.210 sin(0.2 ) 10t te t e− −=  for [ ]0,10t∈  

0.2 0.210 sin(0.2 ) 10 0t te t e− −− =  
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( )0.210 sin(0.2 ) 1 0te t− − =  

0.210 0te− ≠  

[ ]sin(0.2 ) 1,  0,10t t= ∈      1M 

Giving one solution 5 5
2 4

t π π
= ≠      1A 

  

 

f. ( )2: 0, , sin( )ktd R d t e kt
k

−  → =  
 

(i) For domain [ ]20, 0,10
0.2

  =  
 

0.2k =  horizontal distance 5 5 5
2 4 4

t π π π
= − =    1A 

(ii) For domain [ ]20, 0,100
0.02

  =  
 

stationary point where 0.02k = at 
25

4 0.02 2
t π π
= =

×
       

0.02k =   
Solve 0.02 0.0210 sin(0.02 ) 10t te t e− −= for [ ]0,100t∈  

Gives [ ]sin(0.02 ) 1,  0,100t t= ∈   

Giving one solution 25t π=          
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Difference in time 25 2525
2 2

t π ππ= − =     1A 

 

g. For domain 
20,
k

 
  

 

stationary point occurs at 
4

t
k
π

=        

Point of intersection 

Gives 2sin( ) 1,  0,kt t
k

 = ∈  
  

Giving one solution 
2

t
k
π

=         1M 

Difference in time 
2 4 4

t
k k k
π π π

= − =      1A 
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Question 3  

23 (4 )      0 4
64( )
0                  elsewhere

t t t
w t

 − ≤ ≤= 



 

a.i. ( ) ( )
4

0

8E ( )
5

T t w t dt= × =∫   1A 

 

ii. Let m be the median. 

Solve  ( )
0

1( )
2

m

w t =∫  for m. 

1.54m =  minutes   1A 

 

iii. ( ) ( ) ( )
24 4

2

0 0

sd ( ) ( )T t w t t w t dt
 

= × − × 
 

∫ ∫   1M 

4
5

=   1A  
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b.i. 
2

1

( )      0
( )

0                  elsewhere

at b t t b
w t

 − ≤ ≤= 


 

Solve ( )1
0

( ) 1
b

w t dt =∫  and  ( )1
0

4( )
5

b

t w t dt× =∫  for a and b.  1M 

3 ,  2
4

a b= =    1A 

 

 
 
ii. 50%   1A 
 

  
 
c.i. (0.846, 0.888)   1A 
 

 
                                         

ii. No the factory is not misleading their Office Supplies as 80% is below the confidence interval.                                                              
The factory should be claiming at least 85%.  1A 
  



2021 MAV Mathematical Methods Trial Exam 2, Solutions  23 

 
© The Mathematical Association of Victoria, 2021 
 

 
d.i. 2923.3 pages  1A 
 

 
 
ii. ( )~ Bi 5,0.3120...X  

( )Pr 4 0.0356X ≥ =  correct to four decimal places 
 

 
 
 
e.i. Let G represent the green box, B the blue box, W a white chocolate and D a dark chocolate. 

( ) ( )
( )

Pr
Pr |

Pr
G W

G W
W
∩

=   1M 

2

2

2
3 1

2 1 20
3 1 3 35

p
p p
p

p p

×
+ +=

× + ×
+ +

  

2

7
2 9 2

p
p p

=
+ +

    1A 
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ii. The maximum value occurs when p = 1.       

( ) 7Pr |
13

G W =    1A 

 
 

f. Solve 
( )

2
2 1 151 12 2 221 1

2 2

bb
b

b

e e
π π

− ∞ −− −  
 

−∞

    =      
∫ ∫  for b.  1M 

13b =  g  1A 
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OR 
Using z values 

Solve 1512
2

bb −
− = −   1M 

13b =  g   1A 
 
 

  
 
Question 4 
 
a. Correct coordinates labelled on the graph.  1A 

 
( )3 2( ) ( 1) 1y f x x x x x= = + + − +  

Solve ( ) 0f x′ =  for x. 
3
2

x = −  or 0x =   

3 11 0.6875
2 16

f  − = − = − 
 

 and (0) 1f =  
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OR 
Graphically 
 

 
 
b. ( )3 2( ) ( 1) 1y f x x x mx x= = + + − +   

Solve ( ) 0f x′ =  for x.     1M   
23( 1) 9 14 41

8
m m mx − + ± − +

=  or 0x =   1A 

 

 
 
c. 29 14 41 0m m− + >  for m R∈  hence three solutions  

23( 1) 9 14 41
8

m m mx − + ± − +
=  or 0x = for { }\ 1m R∈ .   1A 

When m = 1, 
23( 1) 9 14 41 0

8
m m mx − + + − +

= = . So only two solution.  1A 
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d. m > 1     1A 

Solve 
23( 1) 9 14 41 0

8
m m m− + + − +

< for m. 

 

 
 
OR 
Graphically 
 

 
 
e. 1 correct 1A 
All correct 2A 
m = 1, stationary point of inflection 
m < 1, local maximum 
m > 1, local minimum 
 

f. ( )3 23: ,0 , ( ) ( 1) 1
2

g R g x x x x x − → = + + − +  
 

Shape and endpoints  1A 
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g. The graphs of g and 1g −  are symmetrical about the line 1y x= + . 
The equation of the inverse is too difficult to find. 

So ( )
0

1

Area 2 ( ) ( 1)g x x dx
−

= − +∫    1M 

   2
5

=      1A 

 

 
 

h. Solve ( )( ) 0d d g x
dx dx

  = 
 

 for x.  1M 

1x = −  
The equation of the tangent is 2 2y x= + . 1A  
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i. endpoints 3 11,
2 16

 − − 
 

 and (0,  1)  

111 916
3 8
2

m
+

= =  

The equation of the line passing through the endpoints is 9 1
8

y x= + . 1A 

Dilate by a factor of 16
9

 from the y-axis. 

Translate 1 unit down.       1A 
The order does not matter in this case.  
OR 

Dilate by a factor of 9
16

 from the x-axis. 

Translate 1
8

th of a unit down.      1A 

Order matters in this case. 
There are other possibilities. 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

END OF SOLUTIONS 
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