The Mathematical Association of Victoria

Trial Examination 2021 MATHEMATICAL METHODS

Trial Written Examination 2 - SOLUTIONS

SECTION A: Multiple Choice

Question	Answer	Question	Answer
1	D	11	D
2	В	12	Е
3	А	13	Е
4	Е	14	В
5	Е	15	С
6	С	16	В
7	А	17	С
8	С	18	В
9	D	19	Α
10	А	20	С

Question 1 Answer D

$$y = -2\cos\left(\frac{x}{3}\right) - \frac{1}{2}$$

The amplitude is 2.

The period is
$$\frac{2\pi}{\frac{1}{3}} = 6\pi$$
.

Question 2 Answer B

$$g: D \to R, g(x) = \frac{1}{1+3x}$$
 has range $[-0.5, -0.2)$.

Solve $\frac{1}{1+3x} = -0.5$ and $\frac{1}{1+3x} = -0.2$ for *x*. x = -1 and x = -2

The coordinates of the endpoints are (-2, -0.2) and (-1, -0.5).

g is a decreasing function.

The domain is (-2, -1]

Question 3 Answer A

$$f(x) = x^5 + mx^3 - nx^2 - 1$$

Solve f(-2) = 0 and f(1) = 5.

■ 1.1 1.2 ■ *MAVMC2021 RAD
Define
$$f(x)=x^5+m\cdot x^3-n\cdot x^2-1$$
 Done
solve $(f(-2)=0$ and $f(1)=5,m,n)$
 $m=\frac{-13}{12}$ and $n=\frac{-73}{12}$

Question 4

Answer E

nx - 2y = m $n^2x + 6y = m + 1$

The gradients need to be the same for no solutions. Using ratios

 $n = -\frac{2}{6}n^{2}$ $-n^{2} = 3n$ -n(n+3) = 0 n = 0 or n = -3 $-\frac{1}{3} = \frac{m}{m+1} \text{ for infinite number of solutions}$ m+1 = -3m $m = -\frac{1}{4}$

So, for no solutions

$$n = 0, m \in R \setminus \left\{-\frac{1}{4}\right\}$$
 or $n = -3, m \in R \setminus \left\{-\frac{1}{4}\right\}$
OR

The gradients need to be the same for no solutions and the *y*-intercepts need to be different. nx - 2y = m

$$y = \frac{nx}{2} - \frac{m}{2}$$
$$n^{2}x + 6y = m + 1$$
$$y = \frac{-n^{2}x}{6} + \frac{m+1}{6}$$

The gradients need to be the same for no solutions.

$$\frac{n}{2} = -\frac{n^2}{6}$$

$$-n^2 = 3n$$

$$-n(n+3) = 0$$

$$n = 0 \text{ or } n = -3$$

$$-\frac{m}{2} = \frac{m+1}{6} \text{ for infinite number of solutions}$$

$$-3m = m+1$$

$$m = -\frac{1}{4}$$

So for no solutions

$$n = 0, m \in \mathbb{R} \setminus \left\{-\frac{1}{4}\right\}$$
 or $n = -3, m \in \mathbb{R} \setminus \left\{-\frac{1}{4}\right\}$

Answer E

$$y = \frac{2}{(x-1)^2} - 3$$

Inverse swap *x* and *y* and solve for *y*.

$$x = \frac{2}{(y-1)^2} - 3$$
$$y = 1 \pm \sqrt{\frac{2}{x+3}}$$
$$f^{-1}(x) = 1 + \sqrt{\frac{2}{x+3}}$$

3,y

2

or ν

2

x+3

(y-1)²

solve x:

Question 6 Answer C

$$f:\left[-\frac{\pi}{3},\pi\right] \rightarrow R, f(x) = -2\sin\left(3x\right) + \sqrt{3}$$

Maximum rate of change is when the gradient is at its maximum.

One method is to look where the 2^{nd} derivative f''(x) = 0, which gives the maximum and minimum gradient points. Remember that the gradient does not exist at an end-point.

The maximum is at $x = \frac{\pi}{3}$.

OR

This shows that the maximum rate of change is at $x = \frac{\pi}{3}$ only.

Question 7 Answer A

$$f: \left[0, \frac{\pi}{2}\right] \to R, f(x) = \tan(x) \text{ and } g(x) = \sqrt{2x+1} \text{ over its maximal domain.}$$

For the composite function h(x) = g(f(x)) to exist the range of f must be a subset or equal to the domain of g.

Is the range of $f \subseteq$ domain of g?

Is
$$[0,\infty) \subset \left[-\frac{1}{2},\infty\right]$$
? Yes true.

So, the domain of g(f(x)) is the same as the domain of f which is $\left| 0, \frac{\pi}{2} \right|$.

Answer: $h(x) = \sqrt{2 \tan(x) + 1}$ and $x \in \left[0, \frac{\pi}{2}\right]$

Question 8Answer CFunction $y = -\sqrt{x}$ transformed to the image rule $y = -\sqrt{3x+1} - \frac{1}{4}$ Transformations, in an appropriate order are

- a translation of 1 unit left, giving $y_1 = -\sqrt{x+1}$
- a dilation by a factor of $\frac{1}{3}$ from the *y*-axis, giving $y_2 = -\sqrt{3x+1}$
- a translation of $\frac{1}{4}$ of a unit down, giving $y_3 = -\sqrt{3x+1} \frac{1}{4}$

Question 9

Answer D

$$T\left(\begin{bmatrix} x\\ y \end{bmatrix}\right) = \begin{bmatrix} 3 & 0\\ 0 & -2 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} + \begin{bmatrix} 1\\ 0 \end{bmatrix} \text{ is applied to } y = -x^4$$

Expanding matrices gives $\begin{bmatrix} 3x+1\\ -2y \end{bmatrix} = \begin{bmatrix} x_1\\ y_1 \end{bmatrix}$
 $x = \frac{x'-1}{3} \text{ and } y = \frac{y'}{-2}$
Substitute in the equation $y = -x^4$
 $\frac{y'}{-2} = -\left(\frac{x'-1}{3}\right)^4$
 $y' = 2\left(\frac{x'-1}{3}\right)^4$
Matching Answer D: $y = \frac{2(x-1)^4}{81}$

Question 10 Answer A

Area enclosed equals upper $y = g(x) = 3e^x + 4$ minus lower $y = f(x) = e^{2x}$ From x = 0 to point of intersection at $x = 2\ln(2) = \ln(4)$

Constraints
Edit Action Interactive
Solve (
$$e^{2 \cdot x} = 3 \cdot e^{x} + 4, x$$
)
 $\{x = 2 \cdot \ln(2)\}$
Area = $\int_{1}^{2\log_{e}(2)} (g(x) - f(x)) dx$

Swapping limits gives $\int_{\log_e(4)}^0 (f(x) - g(x)) dx$

Question 11 Answer D $g(x) = \frac{1}{2^x} = 2^{-x}$

$$g(1-x) = \frac{1}{2^{1-x}} = \frac{1}{2} \times 2^x = \frac{1}{2}g(-x)$$

Question 12

Answer E

$$\frac{1}{2}e^{x+2} \times e^{2x-1} = 1$$

C Edit Action Interactive
Solve
$$\left(\frac{1}{2} \cdot e^{x+2} \cdot e^{2 \cdot x-1} = 1, x\right)$$

 $\left\{x = \frac{\ln(2)}{3} - \frac{1}{3}\right\}$
Using Change of base answer equals $x = \frac{\log_2(2)}{3\log_2(e)} - \frac{1}{3} = \frac{1}{3\log_2(e)} - \frac{1}{3}$

© The Mathematical Association of Victoria, 2021

Question 13 Answer E

 $f(x) = -3\log_{e}(2x-2)$ has vertical asymptote at x = 1

Inverse f^{-1} is an exponential function with a horizontal asymptote at y = 1

Possible answers are D or E

y-intercept of f^{-1} sits between y = 1 and y = 2

Matching Answer E

Question 14 Answer B

The length of the pieces of wire are 20-4x cm and 4x cm.

Rectangle

Perimeter is 20-4x cm

6w = 20 - 4x, where *w* is the width of the rectangle

$$w = \frac{10 - 2x}{3}, \ l = \frac{20 - 4x}{3}$$
$$A_{rec \tan gle} = \left(\frac{10 - 2x}{3}\right) \left(\frac{20 - 4x}{3}\right)$$
$$A_{rec \tan gle} + A_{square} = \left(\frac{10 - 2x}{3}\right) \left(\frac{20 - 4x}{3}\right) + x^2$$
For the minimum area $x = \frac{40}{7}$.

Minimum area is $\frac{200}{17}$ cm²

OR

text 💷

$$y = g(x) = 5x^2 + 4$$

Left-endpoint rectangles

$$A_L = \frac{1}{3} \left(g(0) + g\left(\frac{1}{3}\right) + g\left(\frac{2}{3}\right) \right)$$

Right-endpoint rectangles

$$A_{R} = \frac{1}{3} \left(g\left(\frac{1}{3}\right) + g\left(\frac{2}{3}\right) + g(1) \right)$$

Average
$$= \frac{g(0) + 2g\left(\frac{1}{3}\right) + 2g\left(\frac{2}{3}\right) + g(1)}{3 \times 2}$$
$$g(0) + 2g\left(\frac{1}{3}\right) + 2g\left(\frac{2}{3}\right) + g(1)$$

Percentage of exact area = –

$$\frac{3 \times 2 \int_{0}^{1} (g(x)) dx}{3 \times 2 \int_{0}^{1} (g(x)) dx} \times 100\% = 101.6\%$$

1.5 1.6 1.7 ▶ *MAVMC2021	RAD 📘 >	×
Define $g(x) = 5 \cdot x^2 + 4$	Done	•
$\frac{g(0)+2 \cdot g\left(\frac{1}{3}\right)+2 \cdot g\left(\frac{2}{3}\right)+g(1)}{2 \cdot 3 \cdot \int_{0}^{1} g(x) dx} \cdot 100$	<u>15550</u> 153	
$\frac{g(0)+2\cdot g\left(\frac{1}{3}\right)+2\cdot g\left(\frac{2}{3}\right)+g(1)}{2} \cdot 100$	101.63	•

Question 16 Answer B

Average value
$$=\frac{1}{6}\int_{-3}^{3}(h(x))dx$$

The branches are symmetrical.

Average value
$$=\frac{2}{6}\int_{-3}^{0}(h(x))dx = \frac{1}{3}\int_{-3}^{0}(h(x))dx$$

Question 17 Answer C

$$Pr(X = x) = \frac{20}{859}x^{2} - \frac{20}{859x}$$

$$Pr(X = -1) + Pr(X = 4) + Pr(X = -5)$$

$$= \frac{40}{859} + \frac{315}{859} + \frac{504}{859} = 1$$

Question 18

Answer B

(0.162, 0.238)

Question 19

Answer A

Solve
$$\frac{2-\mu}{\sigma} = -2.527...$$
 and $\frac{4.8-\mu}{\sigma} = 2.563...$
 $\mu = 3.39, \ \sigma = 0.55$
 $f(x) = \frac{1}{0.55\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-3.39}{0.55}\right)^2}$

Giving z = -2.527...and z = 2.563...

$$\begin{cases} -2.527 = \frac{2-m}{s} \\ 2.563 = \frac{4.8-m}{s} \\ m, s \\ m=3.390098232, s=0.5500982318 \end{cases}$$

Question 20

Answer C

$$p \sim \operatorname{Bi}\left(n, \frac{2}{5}\right), \ f \sim \operatorname{Bi}\left(n, \frac{3}{5}\right)$$

Examples

$$f(n) = \binom{n}{n} \left(\frac{3}{5}\right)^n \left(\frac{2}{5}\right)^0 = p(0) = \binom{n}{0} \left(\frac{2}{5}\right)^0 \left(\frac{3}{5}\right)^n$$
$$f(n-1) = \binom{n}{n-1} \left(\frac{3}{5}\right)^{n-1} \left(\frac{2}{5}\right) = p(1) = \binom{n}{1} \left(\frac{2}{5}\right) \left(\frac{3}{5}\right)^{n-1}$$

In general

$$f(m) = \binom{n}{m} \left(\frac{3}{5}\right)^m \left(\frac{2}{5}\right)^{n-m} = p(n-m) = \binom{n}{n-m} \left(\frac{2}{5}\right)^{n-m} \left(\frac{3}{5}\right)^m$$

$$f(m) = p(n-m)$$

SECTION B

Question 1

a. $\frac{2x+1}{2x-3}$ $=\frac{2x-3+3+1}{2x-3}$ $=\frac{2x-3+4}{2x-3}$ $=\frac{2x-3}{2x-3}+\frac{4}{2x-3}$ $=1+\frac{4}{2x-3}$

giving
$$a = 1$$
 and $b = 4$

1M Show that

2A

1A

$$f(x) = \frac{2x+1}{2x-3} = 1 + \frac{4}{2x-3}$$

b.i. By inspection the asymptotes are y = 1 and $x = \frac{3}{2}$.

ii. domain $R \setminus \left\{\frac{3}{2}\right\}$, range $R \setminus \{1\}$

$$f_1: \left[-\frac{1}{2}, \frac{1}{6}\right] \to R, f_1(x) = \frac{2x+1}{2x-3}, y = f_1(f_1(x)) = \frac{1-6x}{2x-11}$$

c. For
$$f_1(f_1(x))$$
 to exist test range $f_1 \subseteq$ domain f_1 .
range $\left[-\frac{1}{2}, 0\right] \subset \left[-\frac{1}{2}, \frac{1}{6}\right]$ **1A**

d.i.
$$\left(0, -\frac{1}{11}\right)$$
 and $\left(\frac{1}{6}, 0\right)$ **2A**

e.i. Solve
$$g(x) = x$$

 $x = \frac{5 - \sqrt{33}}{4}$ 1A
Area $= \int_{\frac{5 - \sqrt{33}}{4}}^{\frac{1}{6}} (x - g(x)) dx = \int_{\frac{5 - \sqrt{33}}{4}}^{\frac{1}{6}} \left(x - \frac{1 - 6x}{2x - 11} \right) dx = \int_{\frac{5 - \sqrt{33}}{4}}^{\frac{1}{6}} \left(x + \frac{6x - 1}{2x - 11} \right) dx$ 1A (any)

© The Mathematical Association of Victoria, 2021

ii. 0.030 correct to three decimal places

iii. 0.030 correct to three decimal places

16

1A

Question 2

$$d(t) = e^{-kt} \sin(kt)$$

a.
$$d'(t) = ke^{-kt} (\cos(kt) - \sin(kt))$$

b.i. Solve $d'(t) = ke^{-kt} (\cos(kt) - \sin(kt)) = 0$ gives $ke^{-kt} = 0$ no solution. **1M** and $(\cos(kt) - \sin(kt)) = 0$ $\cos(kt) = \sin(kt)$ $\frac{\cos(kt)}{\cos(kt)} = \frac{\sin(kt)}{\cos(kt)}$ giving $\tan(kt) = 1$ **1M Show that**

ii.
$$d'(t) = 0$$
, $\tan(kt) = 1$
giving general solution $t = \frac{\pi}{4k} + \frac{\pi}{k}n$ where $k \in R^+$, $n \in \{0\} \cup Z^+$ 1A

solve
$$(\tan(k \cdot t) = 1, t)$$

$$\left\{ t = \frac{\pi \cdot \operatorname{constn}(1)}{k} + \frac{\pi}{4 \cdot k} \right\}$$

iii. $t = \frac{\pi}{4k} + \frac{\pi}{k}n$ For $d: \left[0, \frac{2}{k}\right] \rightarrow R, d(t) = e^{-kt}\sin(kt)$

Letting n = 0 gives the local maximum stationary point at $t = \frac{\pi}{4k}$ 1A

Let $d_j:[0,10] \to R, d_j(t) = 10e^{-0.2t} \sin(0.2t)$

c. Solve
$$d'_{j}(t) = 0$$

At $t = \frac{5\pi}{4}$ minutes 1A

maximum amount = $5\sqrt{2}e^{-\frac{\pi}{4}}$ mg/litre

d. Average rate of change, for the interval [0, 10]

$$\frac{d_j(10) - d_j(0)}{10 - 0}$$
 1M

= 0.123 mg/L/min correct to three decimal places

e. Solve
$$10e^{-0.2t} \sin(0.2t) = 10e^{-0.2t}$$
 for $t \in [0, 10]$
 $10e^{-0.2t} \sin(0.2t) - 10e^{-0.2t} = 0$

1A

1A

$$10e^{-0.2t} (\sin(0.2t) - 1) = 0$$

$$10e^{-0.2t} \neq 0$$

$$\sin(0.2t) = 1, \ t \in [0, 10]$$

Giving one solution $t = \frac{5\pi}{2} \neq \frac{5\pi}{4}$
1A

solve
$$(\sin(0, 2\cdot t)=1 \mid 0 \le t \le 10, t)$$

 $\left\{ t = \frac{5 \cdot \pi}{2} \right\}$

1A

f.
$$d: \left[0, \frac{2}{k}\right] \rightarrow R, d(t) = e^{-kt} \sin(kt)$$

(i) For domain $\left[0, \frac{2}{0.2}\right] = [0, 10]$
 $k = 0.2$ horizontal distance $t = \frac{5\pi}{2} - \frac{5\pi}{4} = \frac{5\pi}{4}$
(ii) For domain $\left[0, \frac{2}{0.02}\right] = [0, 100]$
stationary point where $k = 0.02$ at $t = \frac{\pi}{4 \times 0.02} = \frac{25\pi}{2}$
 $k = 0.02$
Solve $10e^{-0.02t} \sin(0.02t) = 10e^{-0.02t}$ for $t \in [0, 100]$
Gives $\sin(0.02t) = 1, t \in [0, 100]$
Giving one solution $t = 25\pi$

Difference in time $t = 25\pi - \frac{25\pi}{2} = \frac{25\pi}{2}$ 1A Edit Action Interactive Ċ ∫dx-Jdx / Simp ¥ ∫dx+ solve(sin(.02t)=1|0 $\le t \le 100, t$) {t=25 $\cdot \pi$ } **g.** For domain $\left[0, \frac{2}{k}\right]$ stationary point occurs at $t = \frac{\pi}{4k}$ Point of intersection Gives $\sin(kt) = 1, t \in \left[0, \frac{2}{k}\right]$ Giving one solution $t = \frac{\pi}{2k}$ 1M Difference in time $t = \frac{\pi}{2k} - \frac{\pi}{4k} = \frac{\pi}{4k}$ 1A Edit Action Interactive Ô fdx fdx fdx/ Simp solve $\left(\sin(\mathbf{k}t) = 1 \mid 0 \le t \le \frac{2}{\mathbf{k}}, t \right)$ $\left\{ t = \frac{2 \cdot \pi \cdot \operatorname{constn}(1)}{k} + \frac{\pi}{2 \cdot \mathbf{k}} \right\}$

© The Mathematical Association of Victoria, 2021

20

Question 3

$$w(t) = \begin{cases} \frac{3}{64}t(4-t)^2 & 0 \le t \le 4\\ 0 & \text{elsewhere} \end{cases}$$

a.i.
$$E(T) = \int_{0}^{4} (t \times w(t)) dt = \frac{8}{5}$$
 1A

ii. Let *m* be the median.

Solve
$$\int_{0}^{m} (w(t)) = \frac{1}{2}$$
 for *m*.

m = 1.54 minutes

iii.
$$\operatorname{sd}(T) = \sqrt{\int_{0}^{4} (t^{2} \times w(t)) - \left(\int_{0}^{4} (t \times w(t)) dt\right)^{2}}$$
 1M
= $\frac{4}{5}$ 1A

b.i.
$$w_1(t) = \begin{cases} at(b-t)^2 & 0 \le t \le b \\ 0 & \text{elsewhere} \end{cases}$$

Solve $\int_0^b (w_1(t)dt) = 1$ and $\int_0^b (t \times w_1(t))dt = \frac{4}{5}$ for a and b . **1M**
 $a = \frac{3}{4}, b = 2$ **1A**

c.i. (0.846, 0.888)

1A

ii. No the factory is not misleading their Office Supplies as 80% is below the confidence interval. The factory should be claiming at least 85%. **d.i.** 2923.3 pages

◀	1.4	1.5	1.6	▶ *EA2202son	RAD 📘	\times
invNorm(0.05,3005.5,50)			2923.3			
2	923.	2573	1870	47	2923.3	

1A

ii. $X \sim \text{Bi}(5, 0.3120...)$

 $Pr(X \ge 4) = 0.0356$ correct to four decimal places

e.i. Let G represent the green box, B the blue box, W a white chocolate and D a dark chocolate.

ii. The maximum value occurs when p = 1.

OR

Using *z* values

Solve $b - 12 = -\frac{b - 15}{2}$ 1M b = 13 g 1A

Question 4

$$f\left(-\frac{3}{2}\right) = -\frac{11}{16} = -0.6875$$
 and $f(0) = 1$

 $\ensuremath{\mathbb{C}}$ The Mathematical Association of Victoria, 2021

OR Graphically

c.
$$9m^2 - 14m + 41 > 0$$
 for $m \in R$ hence three solutions
 $x = \frac{-3(m+1) \pm \sqrt{9m^2 - 14m + 41}}{8}$ or $x = 0$ for $m \in R \setminus \{1\}$. 1A
When $m = 1$, $x = \frac{-3(m+1) + \sqrt{9m^2 - 14m + 41}}{8} = 0$. So only two solution. 1A

A 2.2 2.3 2.4 ★ *EA2202...son RAD ×

$$x = \frac{\sqrt{9 \cdot m^2 - 14 \cdot m + 41} - 3 \cdot (m+1)}{8} | m = 1$$

$$\frac{+\sqrt{9m^2-14m+41}}{-14m+41} < 0$$
 for *m*.

1A

Solve $\frac{-3(m+1)}{2}$

d. *m* > 1

A 2.4 2.5 2.6 ▶ *EA2202...son RAD → ×
 Solve(
$$\sqrt{9 \cdot m^2 - 14 \cdot m + 41} - 3 \cdot (m + 1) < 0, m$$
)
 m>1

8

e. 1 correct1AAll correct2Am = 1, stationary point of inflectionm < 1, local maximumm > 1, local minimum

f.
$$g: \left[-\frac{3}{2}, 0\right] \rightarrow R, g(x) = (x+1)\left(x^3 + x^2 - x + 1\right)$$

Shape and endpoints **1A**

g. The graphs of g and g^{-1} are symmetrical about the line y = x + 1. The equation of the inverse is too difficult to find.

So Area =
$$2\int_{-1}^{0} (g(x) - (x+1))dx$$
 1M
= $\frac{2}{5}$ 1A

h. Solve
$$\frac{d}{dx}\left(\frac{d}{dx}(g(x))\right) = 0$$
 for x. 1M

x = -1

The equation of the tangent is
$$y = 2x + 2$$
. 1A
2.8 2.9 2.10 \triangleright *EA2202...son RAD
solve $\left(\frac{d}{d}\left(\frac{d}{d}(g(x))\right)=0,x\right)$ $x=-1$

$$(dx(dx^{(3(3))})^{(3(3))})$$

tangentLine(g(x),x,-1) 2·x+2

i. endpoints
$$\left(-\frac{3}{2}, -\frac{11}{16}\right)$$
 and (0, 1)
$$m = \frac{1 + \frac{11}{16}}{\frac{3}{2}} = \frac{9}{8}$$

The equation of the line passing through the endpoints is $y = \frac{9}{8}x + 1$. 1A

Dilate by a factor of $\frac{16}{9}$ from the *y*-axis.

Translate 1 unit down. The order does not matter in this case. OR

Dilate by a factor of $\frac{9}{16}$ from the *x*-axis.

Translate $\frac{1}{8}$ th of a unit down.

 1.1
 1.2
 1.3
 *EA2202...son
 RAD
 ×

 Define $f(x) = 2 \cdot x + 2$ Done
 $f\left(\frac{9}{16} \cdot x\right) - 1$ $\frac{9 \cdot x}{8} + 1$ $\frac{9 \cdot x}{8} + 1$
 $\frac{9}{16} \cdot f(x) - \frac{1}{8}$ $\frac{9 \cdot x}{8} + 1$ $\frac{9 \cdot x}{8} + 1$

END OF SOLUTIONS

1A

1A

29