Neap

Trial Examination 2021

VCE Mathematical Methods Units 1&2

Written Examination 1

Question and Answer Booklet

Reading time: 15 minutes Writing time: 1 hour

Student's Name: _____

Teacher's Name:

Structure of booklet

Number of	Number of questions	Number of
questions	to be answered	marks
7	7	40

Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.

Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

Question and answer booklet of 11 pages

Formula sheet

Working space is provided throughout the booklet.

Instructions

Write your **name** and your **teacher's name** in the space provided above on this page.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

All written responses must be in English.

At the end of the examination

You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Instructions

Answer **all** questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

Question 1 (4 marks)

A researcher surveyed 50 people to find if they played cards. The results showed the following.

- 8 people who did not play cards were younger than 40.
- 15 people were younger than 40.
- 22 people who played cards were older than 40.
- **a.** Using these results, complete the Karnaugh map below.

	People younger than 40	People older than 40	Total
Yes			
No			
Total			50

b. Using algebraic techniques, determine if the relationship between age and playing cards is independent.

2 marks

2 marks

Copyright © 2021 Neap Education Pty Ltd

2

Question 2 (3 marks)

The probability that Sam exercises on a weekday (Monday to Friday) is $\frac{3}{5}$. Given that Sam exercises on a weekday, the probability that he exercises on the weekend (Saturday and Sunday) is $\frac{1}{5}$. Given that Sam does not exercise on a weekday, the probability that he exercises on the weekend is $\frac{3}{10}$.

a. Draw a tree diagram that expresses the probability of Sam exercising on a certain day. Use *W* to represent Sam exercising on a weekday and *S* to represent Sam exercising on a weekend. Include the possible outcomes (sample space) and the probabilities stated above.

2 marks

b. What is the probability that Sam does **not** exercise in a given week?

1 mark

Question 3 (2 marks)

Given that
$$\log_3\left(\frac{x}{3}{y}\right) = \log_3\left(\frac{1}{9^{-1}}\right)$$
, express y in terms of x.

Que	Question 5 (7 marks)			
Let	f :[-π	$[r, 2\pi] \rightarrow R$, where $f(x) = -3\sin\left(\frac{\pi x}{4}\right) + 1$.		
a.	Wha	at is the amplitude of $f(x)$?	1 mark	
b.	Wha	at is the period of $f(x)$?	1 mark	
c.	i.	Find <i>f</i> (4).	1 mark	
		(4)		
	ii.	Find $f\left(\frac{1}{3}\right)$.	2 marks	

Question 6 (11 marks) Let $g: [-3,2) \to R$, $g(x) = -(x-1)(x+2)^2$. Find the coordinates of the *x*-intercept(s). 1 mark a. b. Find the coordinates of the *y*-intercept(s). 1 mark Find g'(x). 2 marks c. d. Find the coordinates of any stationary point(s). 3 marks

e.	State the nature of	of the sta	tionary	point(s)	found ir	n part d.
----	---------------------	------------	---------	----------	----------	------------------

f. On the axes below, sketch the graph of g(x). Label all important features.

3 marks

1 mark

Question 7 (10 marks)

Consider the following functions.

	$f(x) = 2x^4 - 3x^3 + 2x^2 - x + 1$	
	$g(x) = 2x^2 + x - 5$	
Find	$\lim_{x \to 1} f(x).$	1 mark
Find	f'(x).	1 mark
Find	1 g(3x).	1 mark
i.	Find $h(x)$ if $h(x) = f(x) - g(x)$.	1 mark
ii.	Solve $\int_{1}^{2} h(x) dx$.	3 marks

Find $\frac{f(x)}{x-2}$.	3

END OF QUESTION AND ANSWER BOOKLET

Trial Examination 2021

VCE Mathematical Methods Units 1&2

Written Examinations 1 and 2

Formula Sheet

Instructions

This formula sheet is provided for your reference. A question and answer booklet is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

MATHEMATICAL METHODS FORMULAS

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

Probability

$\Pr(A) = 1 - \Pr(A')$	$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$
$\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)}$	

END OF FORMULA SHEET