The Mathematical Association of Victoria

Trial Examination 2022 MATHEMATICAL METHODS

Trial Written Examination 2 - SOLUTIONS

SECTION A: Multiple Choice

Question	Answer	Question	Answer
1	В	11	С
2	А	12	D
3	Е	13	С
4	Е	14	D
5	В	15	Е
6	С	16	А
7	А	17	А
8	D	18	С
9	В	19	Е
10	D	20	В

Question 1

Answer B

 $f:[0,10] \rightarrow R, f(x) = 3(x-1)^2 + 5$ has restricted domain [0,10]. Minimum turning point is at (1,5) and the *y*-intercept is at (0,8)

range [5,248]

Question 2 Answer A

$$h(t) = -3\cos\left(\frac{\pi}{6}(t-10)\right) + 4$$

The average height of water from 9 am (t = 0) to 9 pm (t = 12) is found by

$$\frac{1}{12-0}\int_{0}^{12}h(t)dt = 4$$

Alternatively

For one cycle of the symmetric cosine graph the vertical translation of 4 becomes the average value.

Question 3 Answer E

For $y = -\pi \sin(2\pi x) - \pi$, the amplitude is π

Answer E

RAD 📘 *2022MAVMC Done $f(x) := 2^{x-1}$ $f(x) \cdot f(y) = f(x+y-1)$ true *2022MAVMC RAD *2022MAVMC RAD 1.1 $f(x) \cdot f(y) = f(x) + f(y)$ $f(x) \cdot f(y) = f(x \cdot y)$ $\frac{e^{\ln(2)} \sqrt{y(x)}}{4} = \frac{2^{x}}{2}$ $\frac{e^{\ln(2)} \sqrt{y(x)}}{4} = \frac{2^{x}}{2}$ $\frac{e^{\ln(2)} \sqrt{y(x)}}{4} = \frac{e^{\ln(2)} \sqrt{y(x)}}{2}$ $\frac{f(x) \cdot f(y) = f(x+y-2)}{\frac{e^{\ln(2) \cdot (y+x)}}{4}} = \frac{e^{\ln(2) \cdot (y+x)}}{8}$ $f(x) \cdot f(y) = f(x+y)$ C Edit Action Interactive 0.5 1 t→2 b fdx Simp fdx Ψ define $f(\boldsymbol{x})=2^{\boldsymbol{x}-1}$ done $judge(f(\boldsymbol{x})f(\boldsymbol{y})=f(\boldsymbol{x}\boldsymbol{y})$ Undefined judge(f(x)f(y)=f(x+y))FALSE judge(f(x)f(y)=f(x)+f(y)Undefined $judge(f(\boldsymbol{x})f(\boldsymbol{y})=f(\boldsymbol{x}+\boldsymbol{y}-2)$ FALSE $judge(f(\boldsymbol{x})f(\boldsymbol{y})=f(\boldsymbol{x}+\boldsymbol{y}-1)$ TRUE

Question 5 Answer B $g:(3,7] \rightarrow R, g(x) = \frac{-2}{x-3} + 10$ with domain (3,7] and range $(-\infty, 9.5]$ Using CAS to swap x and y to get the rule for inverse $g^{-1}(x) = \frac{3x}{x-10} - \frac{32}{x-10}$ Dom $g^{-1}(x) = \operatorname{Ran} g(x) = (-\infty, 9.5]$

Question 4 (continued)

 $T: \mathbb{R}^2 \to \mathbb{R}^2, T\left(\begin{vmatrix} x \\ y \end{vmatrix} \right)$

Answer C

$$\begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
 has been applied to get the image $y = e^{2x}$.

We need to find the original exponential rule.

$$\begin{bmatrix} x'\\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0\\ 0 & 3 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} -x\\ 3y \end{bmatrix}$$

Giving $x' = -x$ and $y' = 3y$

Substitute into image equation $y' = e^{2x'}$

$$3y = e^{-2x}$$
$$y = \frac{1}{3}e^{-2x}$$

Question 7 Answer A

The gradient of both equations is 1 2x-2y = m and 6x-6y = m

$$y = x - \frac{m}{2}$$
 and $y = x - \frac{m}{6}$

Hence parallel lines

Question 8 Answer D

$$y = a \log_e (bx + c)$$

(3,-6log_e(2)) and $\left(\frac{2}{3},0\right)$

From the graph the vertical asymptote is at $x = \frac{1}{3}$ and the graph is dilated by $\frac{1}{3}$ from the *y*-axis to get the *x*-intercept of $\left(\frac{2}{3}, 0\right)$ So the rule is $y = a \log_e (3x - 1)$

Substitute $(3, -6\log_e(2))$ $-6\log_{e}(2) = a\log_{e}(8)$ $a = \frac{-6\log_e(2)}{\log_e(8)}$ $a = \frac{-6\log_e(2)}{\log_e(2)^3}$ $a = \frac{-6\log_e(2)}{3\log_e(2)}$ Giving a = -2Equation of graph is $y = -2\log_e(3x-1)$ Edit Action Interactive ∫dx ∫dx↓ Simp fdx do . ¥ define $f(x) = \alpha \ln(3x-1)$ done solve(f(3)=-6·ln(2),a) $\{a=-2\}$

Question 9 Answer B A and B are two independent events. $Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$ $= \frac{Pr(A) \times Pr(B)}{Pr(B)} \text{ for independent events}$ $= Pr(A) = \frac{1}{2}$ $Pr(A') = \frac{1}{2}$ $Pr(A' \cap B') = Pr(A') \times Pr(B') = \frac{1}{5}$ $Pr(B') = \frac{2}{5}$ $Pr(A \cap B') = Pr(A) \times Pr(B') = \frac{1}{2} \times \frac{2}{5} = \frac{1}{5}$ OR

$$\Pr(A' \cap B') = \frac{1}{5} \text{ given}$$
$$\Pr(A' \cap B) = 1 - \left(\frac{1}{2} + \frac{1}{5}\right) = \frac{3}{10}$$

$\Pr(A \cap B) = \mathbf{F}$	$\Pr(A) \times \Pr(B) = -$	$\frac{1}{2} \times \left(\frac{3}{10} + \Pr(A \cap$	$B) \Big)$
$\Pr(A \cap B) = \frac{1}{1}$	$\frac{3}{0}$		
$\Pr(A \cap B') = -$	$\frac{1}{2} - \frac{3}{10} = \frac{1}{5}$		
	A	A'	
В	3	3	3
	$\overline{10}$	10	5
<i>B'</i>	1	1	2
	5	5	5
	1	1	1
	2	$\overline{2}$	

Question 10

Answer D

$$f(x) = \begin{cases} \frac{x}{2} + k, & 0 \le x \le k \\ 0, & \text{otherwise} \end{cases} \quad \text{where } k \in \mathbb{R}^+.$$

Firstly, find constant k

For PDF let
$$\int_{0}^{k} \left(\frac{x}{2} + k\right) dx = 1$$

For $k \in \mathbb{R}^{+}$, $k = \frac{2\sqrt{5}}{5}$

To find the median of f(x) solve

$$\int_{0}^{m} \left(\frac{x}{2} + \frac{2\sqrt{5}}{5}\right) dx = 0.5$$
$$m = \frac{\sqrt{130} - 4\sqrt{5}}{5}$$

solve
$$\left(\int_{0}^{m} \frac{x}{2} + \frac{2 \cdot \sqrt{5}}{5} dx = 0.5, m\right)$$

 $\left\{m = \frac{\sqrt{130} - 4 \cdot \sqrt{5}}{5}, m = \frac{-(\sqrt{130} + 4 \cdot \sqrt{5})}{5}\right\}$
Alg Standard Real Rad

Median is $\frac{\sqrt{130} - 4\sqrt{5}}{5}$

Question 11 Answer C

To find the mean of the sample, find the midpoint of the confidence interval (0.3346, 0.4654)0.3346 + 0.4654

$$\frac{0.3346 + 0.4654}{2} = 0.4$$

Using the left edge of the CI solve for *n* where

$$0.4 - 1.96\sqrt{\frac{0.4(1 - 0.4)}{n}} = 0.3346$$

Giving n = 215.5598...Number of students in the random sample is closest to 216

Question 12 Answer D

To find k solve
$$0.2 + \frac{1+k^2}{10} + \frac{4-k}{10} + \frac{k}{20} = 1$$

gives $k = 2, k = -\frac{3}{2}$
As $k \in R^+$, $k = 2$
To find the mean evaluate $0 \times 0.2 + 1 \times \frac{1+k^2}{10} + 2 \times \frac{4-k}{10} + 3 \times \frac{k}{20}$ where $k = 2$
Mean = 1.2

Question 13 Answer C

$$f(x) = x^{4} + bx^{3} + x^{2} - 2$$

Solve $\frac{d}{dx}(x^{4} + bx^{3} + x^{2} - 2) = 0$ for x
 $x = \frac{\pm\sqrt{9b^{2} - 32} + 3b}{8}$ or $x = 0$

There will be three solutions when $9b^2 - 32 > 0$.

$$b < -\frac{4\sqrt{2}}{3}$$
 or $b > \frac{4\sqrt{2}}{3}$

Question 14 Answer D

$$h(x) = \sqrt{1 - 3x}$$

The gradient of the line perpendicular to the line y = 2x is $-\frac{1}{2}$.

Solve
$$h'(x) = -\frac{1}{2}$$
 for x
 $x = -\frac{8}{3}$

The tangent is $y = -\frac{x}{2} + \frac{5}{3}$.

1.2 1.3 1.4 ▶ *2022MAVMC	RAD 📘 🗙
$h(x) := \sqrt{1 - 3 \cdot x}$	Done
solve $\left(\frac{d}{dx}(h(x)) = \frac{-1}{2}, x\right)$	$x=\frac{-8}{3}$
$\operatorname{tangentLine}\left(h(x), x, \frac{-8}{3}\right)$	$\frac{5}{3}$ $\frac{x}{2}$

Question 14

Answer E

$$v = \frac{-1}{(t+1)^2} + \frac{t}{8} + \frac{1}{2}$$

Solve v(t) = 0 for t

t = 0.3553...

$$-\int_{0}^{0.3553...} (v(t)) dt + \int_{0.3553...}^{2} (v(t)) dt$$

= 0.737 correct to three decimal places

OR

Please note that absolute values are not on the course but can be used for these types of questions.

$$\int_{0}^{2} (|v(t)|) dt = 0.737$$

Question 16

Answer A

$$f(x) = e^{\sin(x)} \text{ and } g(x) = e^{\cos(x)}$$

Area = $\int_{-\frac{3\pi}{4}}^{\frac{\pi}{4}} (g(x) - f(x)) dx + \int_{-\frac{\pi}{4}}^{\frac{5\pi}{4}} (f(x) - g(x)) dx$
= $2 \int_{-\frac{3\pi}{4}}^{\frac{\pi}{4}} (g(x) - f(x)) dx$

$$1.7 \quad 1.8 \quad 1.9 \quad *2022MAVQ5 \quad \text{RAD} \quad \times$$

solve $(e^{\sin(x)} = e^{\cos(x)}, x) \quad x = \frac{(4 \cdot n1 - 3) \cdot \pi}{4}$
solve $(e^{\sin(x)} = e^{\cos(x)}, x) | -\pi < x < 2 \cdot \pi$
 $x = \frac{-3 \cdot \pi}{4} \text{ or } x = \frac{\pi}{4} \text{ or } x = \frac{5 \cdot \pi}{4}$

Question 16

Question 17

Answer A

$$f(x) = -\log_e(12 - 4x) \text{ and } g(x) = -\frac{1}{\sqrt{2x - 4}}$$
$$f(g(x)) = -\log_e\left(12 + \frac{4}{\sqrt{2x - 4}}\right)$$
Domain of $f(g(x))$ is $x > 2$
Range is $(-\infty, -\log_e(12))$

Answer C

$$y = f(x) = -x^{3} + 4$$

$$\int_{0}^{2} (-x^{3} + 4) dx$$

$$\approx \frac{1}{2} \left(f\left(\frac{1}{2}\right) + f(1) + f\left(\frac{3}{2}\right) + f(2) \right)$$

$$= \frac{7}{4}$$

 Question 19
 Answer E

 2x - y = 6 and 3x + 2y = 5

 y = 2x - 6 and $y = -\frac{3}{2}x + \frac{5}{2}$
 $\tan(\theta_1) = 2$ and $\tan(\theta_2) = -\frac{3}{2}$
 $\theta_1 = \tan^{-1}(2) = 63.43..., \theta_2 = \tan^{-1}\left(-\frac{3}{2}\right) = -56.30...$

 Acute angle $= \theta_A = 180 - (63.43... + 56.30...) = 60.26$ correct to two decimal places

OR

Please note absolute values are not on the course but can be used for these types of questions.

$$\tan(\theta) = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{2 + \frac{3}{2}}{1 - 3} \right|$$

Acute angle = 60.26 correct to two decimal places

Question 20 Answer B

 $f(x) = 2\sqrt{4x-a}$ and g(x) = (x-1)(x+2)(x+3)The maximum number of points of intersection is two. When x = -2, $2\sqrt{4 \times -2 - a} = 0$, a = -8When x = -3, $2\sqrt{4 \times -3 - a} = 0$, a = -12So two points of intersection occur when $-12 \le a \le -8$.

END OF SECTION A SOLUTIONS

SECTION B

Question 1

$$h:[0,10] \to R, h(t) = 0.005t(t-10)^{2}(2t+5)$$

a. Average height $=\frac{1}{10-0}\int_{0}^{10}h(t)dt$
 $=\frac{65}{12}$ cm 1A

b. Maximum height = 9.5 cm correct to one decimal place 1A

$$=\frac{n\left(\frac{16}{16}\right)-n(0)}{\frac{25+5\sqrt{89}}{16}-0}$$
= 2.11 cm/min 1A

 $\ensuremath{\mathbb{C}}$ The Mathematical Association of Victoria, 2022

d. From the gradient graph the height of liquid is increasing at its maximum rate at

When full, volume of glass $=\frac{1}{3}\pi \times 3^2 \times 12 = 36\pi$ cm³ Solve for t, $\frac{\pi}{48}(h(t))^3 = 18\pi$ 1M Glass is half full at t = 4.43, 4.59 mins correct to two decimal places 1A

19

Question 1 (continued)

g.
$$h_1:[a,10+a] \to R, h_1(t) = 0.005(t-a)(t-a-10)^2(2(t-a)+5)$$

Recognise $h_1(t) = h(t-a)$ for $t \in [a,10+a]$

Equate
$$\frac{h_1(2+a) - h_1(a)}{2+a-a} = h_1'(4.428...)$$
 1M

$$a = 2.73$$
 or $a = 3.92$ correct to 2 decimal places

Question 2

$$w: [-4,4] \to R, w(x) = \sqrt{r^2 - x^2} + c \text{ where } r > 0 \text{ and } c \in R^+ \cup \{0\}$$

a. Radius = 4 dm
b. $w(x) = \sqrt{16 - x^2} + 1$
c. Area of the rectangle is $A_r = 2x_1(y_1 - 1)$.
 $A_r = 2x_1(\sqrt{16 - x^2} + 1 - 1)$
 $A_r = 2x_1\sqrt{16 - x_1^2}$ as required
1M Show that
d. $A_r = 2x_1\sqrt{16 - x_1^2}$

Solve $\frac{d}{dx_1}(A_r) = 0$ Gives $x_1 = \pm 2\sqrt{2}$ for $x_1 > 0, x_1 = 2\sqrt{2}$ maximum area of rectangle = 16 dm².

Justification

x	1	$2\sqrt{2}$	3	
$A_{r}^{\prime}(x)$	$\frac{28\sqrt{15}}{15}$	0	$\frac{-4\sqrt{7}}{7}$	
	/			

1M

1A

OR

 $A_{r}''(2\sqrt{2}) = -8$, $A_{r}'' < 0$, hence a maximum **1M**

e. Given radius = 4 dm

Area of semicircle
$$=\frac{1}{2}\pi 4^2 = 8\pi$$

Proportion stained glass $=\frac{16}{8\pi} = \frac{2}{\pi}$ 1A
f $h(x) = -\frac{1}{2}(a^x + a^{-x}) + d$ where $d \in \mathbb{R}^+ + 10^3$

1A

f. $h(x) = -\frac{1}{2}(e^{x} + e^{-x}) + d$ where $d \in R^{+} \cup \{0\}$. Substitute (0,5) into $h(x) = -\frac{1}{2}(e^{x} + e^{-x}) + d$ d = 6

g. Solve $-\frac{1}{2}(e^x + e^{-x}) + 6 = 1$ Intersects with line y = 1 at $(\log_e(5 - 2\sqrt{6}), 1)$ and $(\log_e(5 + 2\sqrt{6}), 1)$

1A

h. For the rectangle: solve $16 = 2 \times 2\sqrt{2} \times \text{width}$ width $= 2\sqrt{2}$ Solve $h(x) = 2\sqrt{2} + 1$ for xx = -1.410...

$$2\left(\int_{\log_{e}(5-2\sqrt{6})}^{-1.410...} (h(x)-1) dx + 1.410... \times 2\sqrt{2}\right)$$
 1M

$$=10.9 \text{ dm}^2$$

1M

C Edit Action Interactive

$$0.5 \pm 2$$
 b fdx Simp fdx V ψ V
solve $(16=2\cdot2\cdot\sqrt{2}\cdot y, y)$
 $y=2\cdot\sqrt{2}$
solve $(h(x)=2\cdot\sqrt{2}+1, x)$
 $\{x=-1.41079072, x=1.41079072\}$

$$2(\int_{\ln(5-2\sqrt{6})}^{-1.41079} (h(x)-1) dx+1.41079 (2\sqrt{2})$$
10.85433313

Alg Standard Real Rad

OR

$$\int_{\log_{e}(5-2\sqrt{6})}^{\log_{e}(5+2\sqrt{6})} (h(x)-1) dx - \int_{-1.410...}^{1.410...} (h(x)-(2\sqrt{2}+1)) dx$$
 2M

 $=10.9 \ dm^2$

$\int_{\ln \theta}^{\ln \theta}$	$5+2\sqrt{6}$) $5-2\sqrt{6}$) (h(x	()—1)d	x-∫_	$(h(x) - (2\sqrt{2}+1))$
I				10.85433313
Alg	Standard	Real	Rad	(II

Question 3

a.i. $X \sim N(15,1)$ Pr(X > 17.5) = 0.0062

I.1 ▶ *2022MAVEA DEG
 InormCdf(17.5,∞,15,1) 0.0062097
 a.ii. Pr(X > 17.5 | X ≥ 14)

$$= \frac{\Pr(X > 17.5 ∩ X ≥ 14)}{\Pr(X ≥ 14)}
 = \frac{\Pr(X > 17.5)}{\Pr(X ≥ 14)}
 1M$$

= 0.0074 correct to four decimal places **1A**

1.1 1.2 ▶	*2022MAVEA	DEG 📘	×
normCdf(14,∞,	15,1)	0.8413447	
$\frac{\text{normCdf}(17.5, 0)}{\text{normCdf}(14.5)}$	∞,15,1) 2,15,1)	0.0073807	
nonnear(14,~	,10,1/		

 $\ensuremath{\mathbb{C}}$ The Mathematical Association of Victoria, 2022

b.
$$M \sim N(\mu, \sigma)$$

 $\frac{3.8 - \mu}{\sigma} = -1.666....$
 $\frac{4.2 - \mu}{\sigma} = 1.042...$ **1M**
 $\mu = 4.05$ kg, $\sigma = 0.15$ kg **1A**

【 1.2 1.3 1.4 ▶ *2022MAVEA DEG
invNorm(0.0478,0,1) -1.66657
invNorm(1-0.1487,0,1) 1.042025
solve
$$\left(\frac{3.8-a}{b}$$
=-1.6665696892669 and $\frac{4.2-a}{b}$
 a =4.046116 and b =0.147678

c. $X \sim \text{Bi}(25, 0.8035)$ p = 1 - (0.0478 + 0.1487) = 0.8035

 $Pr(X > 20) = Pr(21 \le X \le 25) = 0.4380$ correct to four decimal places 1A

1M

∢	1.3	1.4	1.5	▶	2022MAVEA	RAD 📘	\times
1	-(0.0	0478-	+0.14	18	7)	0.8035	
b	inom	Cdf	25,0.	.80	35,21,25)	0.4379719	

d. $X_1 \sim \text{Bi}(n, 0.8035)$ $\Pr(21 \le X_1 \le n) > 0.95$ **1M** Trial and error n = 30 $\Pr(21 \le X_1 \le 30) = 0.944...$ n = 31 $\Pr(21 \le X_1 \le 31) = 0.970...$ n = 31 **1A**

$$\mathbf{e.} \ s(x) = \begin{cases} \frac{x}{4} - 3 & 12 \le x \le 14 \\ a(x - 16)^2 + b & 14 < x \le 16 \\ 0 & \text{elsewhere} \end{cases}$$

$$\int_{12}^{14} \left(\frac{x}{4} - 3\right) dx = \frac{1}{2}$$

Solve $\int_{14}^{16} \left(a(x - 16)^2 + b\right) dx = \frac{1}{2}$ and $a(14 - 16)^2 + b = \frac{14}{4} - 3$ for *a* and *b* **1M**
 $a = \frac{3}{32}, b = \frac{1}{8}$ **1A**

$$\mathbf{f.i.} \ p(x) = \begin{cases} \frac{3x^2}{32} - \frac{3x}{2} + \frac{49}{8} & 8 \le x \le 10 \\ -\frac{x}{4} + 3 & 10 < x \le 12 \\ 0 & \text{elsewhere} \end{cases}$$

Reflection in the line x = 121AORReflection in the y-axisTranslation of 24 units to the right1A

Question 3 (continued)

Question 4

$$\mathbf{b.}\left[-\frac{2\sqrt{3}}{9},\frac{2\sqrt{3}}{9}\right] \qquad \mathbf{1A}$$

1.9 1.10 1.11 ▶ *MAVEAQ4	rad 📘 🗙		rad 📘 🗙
$f(x):=(\sin(x))^2 \cdot \cos(x)$	Done 🔺		9
fMin($f(x), x$) 0 <x<2·<math>\pi $x=\sin^{-1}\left(\frac{\sqrt{3}}{3}\right)+\frac{\pi}{2}$ or $x=\frac{3\cdot\pi}{2}-s$</x<2·<math>	$\ln^{-1}\left(\frac{\sqrt{3}}{3}\right)$	fMax $(f(x),x) 0 < x < 2 \cdot \pi$ $x = \cos^{-1}\left(\frac{\sqrt{3}}{3}\right) \text{ or } x = \sin^{-1}\left(\frac{\sqrt{3}}{3}\right)$	$+\frac{3\cdot\pi}{2}$
$f\left(\sin^{-1}\left(\frac{\sqrt{3}}{3}\right) + \frac{\pi}{2}\right)$	$\frac{-2 \cdot \sqrt{3}}{9}$	$= \left(\cos^{-1}\left(\frac{\sqrt{3}}{3}\right) \right)$	2•√3 9

c.
$$x = \frac{\pi k}{2}, k \in \mathbb{Z}$$
 1A
OR
 $x = \frac{(2k-1)\pi}{2}, x = k\pi, k \in \mathbb{Z}$ 1A

d.
$$2\pi k < x < \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}$$
 or **1A**

$$-\frac{\pi}{2} + 2\pi k < x < 2\pi k, k \in \mathbb{Z}$$
 1A

e.
$$A\left(\frac{\pi}{2}, -1\right), B\left(\frac{3\pi}{2}, 1\right)$$
 1A
 $m = \frac{2}{\pi}$
 $y + 1 = \frac{2}{\pi}\left(x - \frac{\pi}{2}\right)$
 $y = \frac{2}{\pi}x - 2$ 1A

f.i. Midpoint $(\pi, 0)$, $m = -\frac{\pi}{2}$

$$y = -\frac{\pi}{2}(x - \pi) = -\frac{\pi}{2}x + \frac{\pi^2}{2}$$
 1A

$$\frac{1.10 \ 1.11 \ 1.12}{\text{ normalLine}} \xrightarrow{\text{MAVEAQ4}} \frac{\pi^2}{2} - \frac{\pi \cdot x}{2}$$

$$\frac{\pi^2}{2} - \frac{\pi \cdot x}{2}$$

f.ii.
$$C\left(\pi - \sin^{-1}\left(\frac{\sqrt{2}}{3}\right), \frac{4\sqrt{2}}{9}\right)$$

 $y = -\frac{\pi}{2} \times \left(\pi - \sin^{-1}\left(\frac{\sqrt{2}}{3}\right)\right) + \frac{\pi^2}{2}$
 $= \frac{\sin^{-1}\left(\frac{\sqrt{2}}{3}\right)\pi}{2}$
 $\neq \frac{4\sqrt{2}}{9}$

1M Show that

1M

g. Area = 3.33 correct to two decimal places 1A

h. $\frac{2\pi}{k} = 4\pi$ $k = \frac{1}{2}$ $g(x) = \sin^2(kx)\cos(kx), g'(x) = 2k\sin(kx)\cos^2(kx) - k\sin^3(kx)$ 1M Area = 4.00 1A

i. Find the bounded area over the interval $\left| 0, \frac{2\pi}{k} \right|$.

Use trial and error

When k = 3, the bounded area is 3.107... When k = 4, the bounded area is 3.095...

$$k = 4$$
 1A

Question 5

 $p: R \to R, p(x) = -(x-1)^3$ a. Let $y = -(x-1)^3$ Inverse swap x and y $x = -(y-1)^3$ $p^{-1}(x) = \sqrt[3]{-x} + 1 = 1 - \sqrt[3]{x}$ 1A (either form)

1A

1A

e. Three solutions occur when $0 < a \le \frac{16}{27}$ and $a = \frac{32}{27}$ 1A

$$a = \frac{16}{27} \qquad \qquad a = \frac{32}{27}$$

$x^{2} + bx + c = (x-1)(x-c) = x^{2} - (c+1)x + c$

1A

$$b = -c - 1, \ b \neq -2$$

END OF SOLUTIONS