The Mathematical Association of Victoria

Trial Exam 2023

MATHEMATICAL METHODS

WRITTEN EXAMINATION 1

STUDENT NAME	

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room any technology (calculators or software) or notes of any kind. blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 11 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **name** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1 (3 marks)

	1 mark
b. If $f(x) = \frac{e^{2x}}{2x+1}$ find $f'(2)$. marks	

Question 2 (5 marks)

Let
$$f:(-2,\infty) \to R$$
, $f(x) = \frac{1}{x+2}$ and $g:(3,\infty) \to R$, $g(x) = \frac{1}{x-3}$.

a. Explain why $f \circ g$ exists.

1 mark

b. Show that $(f \circ g)(x) = \frac{1}{2} - \frac{1}{4x - 10}$.

2 marks

c. Sketch the graph of $f \circ g$ on the set of axes below. Label any asymptotes with their equations.

2 marks

Question 3 (4 marks)

a. Given that $g'(x) = \frac{1}{(3x+1)^2}$, $x \in R \setminus \left\{-\frac{1}{3}\right\}$ find an expression for g(x) if g(0) = 3.

b. Evaluate $\int_{-\frac{\pi}{10}}^{\frac{\pi}{4}} \left(-\frac{1}{2} \sin(6x) \right) dx.$

2 marks

Question 4 (4 marks)

Part of the graph of y = f(x) is shown below. It has a turning point at (-1,4) and the y-coordinates of the points of inflection are 1. The rule for the graph is $f(x) = A\cos\left(nx + \frac{1}{4}\right) + c$, where $n \in Q$ and $A, c \in Z^+$.

a.	i. Find the values of A and c .	1 mark

	i. Find the value of <i>n</i> and give the general solution to the <i>x</i> -coordinates of the points of inflection.			
-				
-				
_				

b.	State a sequence of transformations that map the graph of $f(x) = A\cos\left(nx + \frac{1}{4}\right) + c$ onto the	
	graph of $g(x) = \cos\left(nx + \frac{1}{x}\right) + c$.	1 mark

Question 5 (5 marks)

Part of the graph of f where $f(x) = x^3 + 2x^2 - x + 1$ is shown below.

a. Find the *x*-coordinates of the turning points.

2 marks

The solution to f(x) = 0 occurs between x = -2 and x = -3.

b. Use one iteration of Newton's Method, with x = -3 as the initial value, to find a better approximation.

2 marks

c. Draw the tangent line to f at x = -3 on the above graph and label the x-axis intercept with its coordinates.

1 mark

Question 6 (5 marks)

The velocity, $v \text{ ms}^{-1}$ of a particle at time t seconds has rule $v(t) = (t-8)^{\frac{2}{3}} + 1$ where $t \ge 0$. Part of the graph of v is shown below.

a. Find the time in seconds, when the acceleration, $a \text{ ms}^{-2}$, of the particle is equal to 1 ms^{-2} , given a = v'(t).

2 marks

b. Find the average rate of change of v from t = 0 to t = 35.

2 marks

A second particle is travelling at v_2 ms⁻¹, where $v_2(t) = -v(t) + 10$. The bounded area between the graphs of v and v_2 represents how much further the second particle has travelled than the first particle over that time period.

c.	Write down a definite integral which when evaluated will give this distance. Give you	ır
	answer in terms of t. Do not evaluate the integral.	

1 mark

Question 7 (6 marks)

Hadiza either walks or takes the bus to work, depending on the weather. The probability it is going to rain on a particular morning is 0.2. If it rains on a particular morning the probability Hadiza will walk to work is 0.1. If it does not rain, the probability she will walk to work is 0.8.

Hadiza works for a large accounting company. The duration of her telephone calls to her clients is a random variable T minutes with probability density function

$$f(t) = \begin{cases} \frac{3}{5}\sqrt{t} & 0 \le t \le 1\\ \frac{3e}{5}e^{-t} & 1 < t < \infty.\\ 0 & t < 0 \end{cases}$$

b.	Show that $Pr(T \le 1) = \frac{2}{5}$.	1 mark
c.	Find the 50^{th} percentile of T .	3 marks

Question 8 (4 marks)				
Let $g(x) = a \log_2(x+b)$ where $a,b \in R$. If $g(2) = 6$ and $g(6) = 9$ find a and b .				
300 g(n) wing(n + 0) where w, 0 = 111 in g(n) = 0 min g(0) = 0 min w min o				

Question 9 (4 marks)

b.

Let $h: (-\infty, a) \to R, h(x) = \frac{1}{(x-a)^2}$ where a is a real constant.

a.	Find the rule for h^{-1} in terms of a .	1 mark
		_
		_
		-
		-

Find the value of a so that $h = h^{-1}$ has one unique solution. Put your answer in the form	
$\frac{b}{c^d}$ where $b, c \in Z^+$ and $d \in Q$.	3 marks
	_
	_
	_
	_
	_
	_
	_
	_

END OF QUESTION AND ANSWER BOOK