MATHEMATICAL METHODS

Written examination 2

2023 Trial Examination

SOLUTIONS

SECTION 1: Multiple-choice questions (1 mark each)

1.	А	11.	А
2.	С	12.	С
3.	Е	13.	Е
4.	В	14.	А
5.	С	15.	В
6.	В	16.	С
7.	С	17.	D
8.	Е	18.	Е
9.	D	19.	Е
10.	А	20.	А

Question 1

Answer: A

Explanation:

 $-1 = 1 - 2x, \quad x = 1$ $4 = 1 - 2x, \quad x = -\frac{3}{2}$

Question 2

Answer: C

Explanation:

$$\left(\frac{\pi}{2}, 0\right)$$
 and $(\pi, -2)$
 $(0 - -2)^2 + \left(\frac{\pi}{2} - \pi\right)^2$
 $= 4 + \frac{\pi^2}{4}$

Question 3

Answer: E

Explanation:

Range: 1 ± 4 $T = \frac{2\pi}{2} = \pi$

Question 4

Answer: B

Explanation:

dom $h^{-1} = \operatorname{ran} h = [4, \infty)$

$$x = 2(x - 3)^{2} + 4$$

$$x - 4 = 2(x - 3)^{2}$$

$$\frac{x - 4}{2} = (x - 3)^{2}$$

$$\pm \sqrt{\frac{x - 4}{2}} = x - 3$$

so $h^{-1}(x) = \pm \sqrt{\frac{x - 4}{2}} + 3$

Discard negative as we want the upper section.

Question 5

Answer: C

Explanation:

 $0.2^2 + 0.35^2 + 0.35^2 + 0^2 + 0.1^2 = 0.295$

Question 6

Answer: B

Explanation:

$$\frac{\frac{y}{a}}{\frac{b^{2}}{b^{a}}} = \log_{b}(c - 2x)$$
$$\frac{\frac{y}{b^{a}}}{b^{a}} = c - 2x$$
$$2x = c - b^{\frac{y}{a}}$$
$$x = \frac{c - b^{\frac{y}{a}}}{2}$$

Question 7

Answer: C

Explanation:

 $14 = \frac{2\pi}{b}, b = \frac{\pi}{7}$ and amplitude 2.5

Negative cosine graph with mean value 2.5 and amplitude 2.5 Hence $y = 2.5 - 2.5 \cos\left(\frac{\pi t}{7}\right)$

Question 8

Answer: E

Explanation: Sample proportion is midpoint so $\frac{0.428+0.612}{2} = 0.52$

Question 9

Answer: D

Explanation:

$$y''(x) = 12x - 4$$
, so $y''(x) = 0$ at $x = \frac{1}{3}$, with $y''(x) > 0$ and $y''(x) < 0$ on either side.

Question 10

Answer: A

Explanation:

64 + 16m + n = 100 $f'(x) = 3x^{2} + 2mx$ f'(4) = 0 48 + 8m = 0m = -6, n = 132

Question 11

Answer: A

Explanation:

 $(-5 \times a) + (0 \times 4a) + 5(1 - 5a)$ = 5 - 30a

Question 12

Answer: C

Explanation:

Need same gradient but different y intercepts.

$$\frac{a}{5} = \frac{2}{a} \neq \frac{b}{5}$$
$$a^2 = 10$$
$$a = \sqrt{10}$$
$$\frac{5}{\sqrt{10}} \neq \frac{b}{2}, \quad b \neq \sqrt{10}$$

Question 13

Answer: E

Explanation:

Area:
$$A(x) = x\sqrt{16 - x^2}$$

 $A'(x) = \sqrt{16 - x^2} - \frac{x^2}{\sqrt{16 - x^2}}$
 $A'(x) = 0 \text{ at } x = 2\sqrt{2}$
 $A(2\sqrt{2}) = 8$

Question 14

Answer: A

Explanation:

$$\Pr(\hat{P} = 0) = (1 - p)^{4} = \frac{16}{625} = \left(\frac{2}{5}\right)^{4}$$

Hence $p = \frac{3}{5}$
$$\Pr(\hat{P} = 1) = p^{4} = \frac{81}{625}$$

Question 15

Answer: B

Explanation:

$$Pr(X > 265) = 0.10565$$

So $Pr\left(Z < \frac{265 - 250}{\sigma}\right) = 0.89435$
 $\frac{15}{\sigma} = 1.25$
 $\sigma = 12$

Question 16

Answer: C

Explanation:

$$f(x) = x^{3} - 3x, \quad f'(x) = 3x^{2} - 3$$

So $x_{n+1} = x_{n} - \frac{x_{n}^{3} - 3x_{n}}{3x_{n}^{2} - 3}$
 $x_{n+1} = \frac{4x_{n}^{3} - 6x_{n}}{3x_{n}^{2} - 3}$

Question 17

Answer: D

Explanation:

Area =
$$\frac{1}{2} \times \frac{1}{2} (f(1) + 2f(1.5) + 2f(2) + 2f(2.5) + 2f(3) + 2f(3.5) + f(4))$$

= $\frac{245}{16} = 15.3125$

Question 18

Answer: E

Explanation:

$$\int_{0}^{\frac{\pi}{4}} f(x) \, dx = 1 \text{ so } a = 2$$
$$E(X) = \int_{0}^{\frac{\pi}{4}} x f(x) \, dx = \frac{\pi - 2}{4}$$

Question 19

Answer: E

Explanation: Look for first time abs f(x) < 0.001

2	N	x	f(x)	g(x)	
3	0	2	-10.5858	-12.7071	
ŧ.	1	1.16694	-3.00499	-7.92735	
5	2	0.787873	-0.97461	-5.85384	
5	3	0.621382	-0.37007	-4.99688	
7	4	0.547322	-0.15887	-4.63563	
3	5	0.51305	-0.07339	-4.47441	
)	6	0.496649	-0.03525	-4.39887	
0	7	0.488636	-0.01727	-4.36238	
1	8	0.484677	-0.00855	-4.34446	
2	9	0.48271	-0.00425	-4.33558	
3	10	0.481729	-0.00212	-4.33116	
4	11	0.481239	-0.00106	-4.32895	
5	12	0.480994	-0.00053	4.32785	
6	13	0.480872	-0.00026	-4.3273	
7	14	0.480811	-0.00013	-4.32702	
8	15	0.48078	-6.6E-05	-4.32689	
9	16	0.480765	-3.3E-05	-4.32682	
0	17	0.480757	-1.7E-05	-4.32678	

Question 20

Answer: A

Explanation:

 $\Pr(both \ same) = \Pr(blue, blue) + \Pr(black, black) = \frac{u}{u+v} \times \frac{u-1}{u+v-1} + \frac{v}{u+v} \times \frac{v-1}{u+v-1}$

$$=\frac{u^2+v^2-u-v}{(u+v)(u+v-1)}$$

SECTION 2

Question 1

a. $dom f = (2, \infty)$ ran f = R2 marks

b.
$$f'(x) = \frac{4}{(x-2)\log_e(2)}$$
 1 mark

c.
$$f'(6) = \frac{1}{\log_e(2)}$$

 $y - 9 = \frac{1}{\log_e(2)}(x - 6)$
 $y = \frac{1}{\log_e(2)}(x - 6) + 9$
2 marks

d.
$$f'(x) = \frac{1}{2\log_e 2} at x = 10$$
 1 mark

f(10) = 13

Distance = $\sqrt{(10-0)^2 + (13-0)^2} = \sqrt{269}$

e. Translation of 2 units left and one unit down followed by a dilation of factor $\frac{1}{4}$ from the x axis 3 marks

Total 11 marks

1 mark

Question 2

a.	Max temp occurs at $T = 24.2$ °C occurring at $t = 6 ad t = 18$	2 marks
b.	$T = \frac{\frac{2\pi}{\pi}}{6} = 12 \text{ hours}$	1 mark
c.	T(t) = 22 at t = 3.607, 8.393, 15.607 and 20.393 $2 \times (8.393 - 3.607) = 9.572$	
9.57 24	$\frac{2}{2} \times 100 = 40\%$ of the time greater than $22^{\circ}C$	2 marks
d.		
T(t 2 × 17.1	(c) = 23 at $t = 4.289, 7.711, 16.289$ and 19.711 (c) $(7.711 - 4.289) = 6.842$ so 17.158 hours $\frac{58}{58} \times 100 = 71\%$ of the time less than 23°C	
24	$\sim 100 - 71\%$ of the time ress than 20 0	2 marks
e.	$4 \times (4.289 - 3.607) = 2.728$ hours = 2h 44 min	2 marks
		Total 9 marks

Question 3

a.
$$\Pr(X = 4) = {\binom{10}{4}} \left(\frac{1}{2}\right)^4 \left(\frac{1}{2}\right)^6 = 0.2051$$
 1 mark

b.
$$\Pr(X \le 7) = \sum_{x=0}^{7} {\binom{10}{x}} \left(\frac{1}{2}\right)^x \left(\frac{1}{2}\right)^{10-x} = 0.9453$$

1 mark

c.
$$\Pr(X \le 4) = \sum_{x=4}^{10} {\binom{10}{x}} \left(\frac{1}{2}\right)^x \left(\frac{1}{2}\right)^{10-x} = 0.9453$$

 $\Pr(4 \le X \le 7) = \sum_{x=4}^7 {\binom{10}{x}} \left(\frac{1}{2}\right)^x \left(\frac{1}{2}\right)^{10-x} = 0.7734$

1 mark

So
$$\Pr(X \ge 4 | X \le 7) = \frac{0.7734}{0.9453} = 0.818$$

d. $E(X) = np = 10 \times \frac{1}{2} = 5$
1 mark

$$SD(X) = \sqrt{np(1-p)} = \sqrt{10 \times \frac{1}{2} \times \frac{1}{2}} = \frac{\sqrt{10}}{2}$$
 2 marks

e.
$$\Pr(X = 10) = \left(\frac{1}{2}\right)^{10} = \frac{1}{1024}$$

Total 8 marks

Question 4

a. t = 0 when A = 8.1 so c = 8.11 mark

A(2) = 11.043 and A(10) = 8.370a = 4, b = 2, c = 82 marks

- **b.** From graph see that max occurs at t = 2 where A = 11.043 mmol/L
- c. A(t) = 10 at t = 0.66106 and t = 4.494641 mark

4.49464 - 0.66106 = 3.8336min = 3min50sec

d.
$$A'(t) = 4e^{-\frac{t}{2}} - 2te^{-\frac{t}{2}}$$
 1 mark

e. From graph of A'(t) can see that max increase occurs at t = 0 and max decrease occurs at t = 4

2 marks

1 mark

1 mark

	f.	7.9mmol/L	1 mark
	g.	Max is 10.659mmol/L and this occurs at $t = 2.5$	2 marks
	h.	A(t) = B(t) at $t = 3.702$ and 11.508	1 mark
	Har Her	nnah's blood sugar is greater than Freddie's during these times nce $11.508 - 3.702 = 7.806$ min= 7min 48sec	2 marks Total 15 marks
	Qu	estion 5	
	a.	$\int_0^4 a(4x^3 - x^4) dx = 1$	1 mark
a =	$\frac{5}{256}$	6	1 mark
	b.	$E(X) = \int_0^4 x f(x) dx$	1 mark
<i>x</i> =	$\frac{8}{3}$ da	ays	1 mark
	c.	$\int_{3}^{4} f(x) dx = \frac{47}{128} = 37\%$	2 marks
	d.	$\int_{2}^{3} f(x) dx = \frac{57}{128}$	
		$\int_{2}^{4} f(x) dx = \frac{13}{16}$	1 mark
57 <u>128</u> <u>13</u>	<u>3</u> =	57 104	
16			1 mark
	e.	$\Pr(30 < X < 40) = 0.5249$	1 mark
a =	f. : 26.	Pr(X < a) = 0.1 .02mm is the largest small worm.	
$\Pr(b) =$	X > 42.	b) = 0.15 26mm is the shortest large worm.	2 marks

g. 75% of all worms are standard length. $0.75^{20} = 0.0032$

h.
$$E(\hat{P}) = p = 0.75$$

$$SD(\hat{P}) = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.75 \times 0.25}{20}} = 0.0968$$

i.
$$\mu - 2\sigma = 0.75 - 2(0.0968) = 0.5564$$

 $\mu + 2\sigma = 0.75 + 2(0.0968) = 0.9436$

In a random sample of 20 worms, the sample proportion will lie between 0.5564 and 0.9436 95% of the time.

1 mark

1 mark

Total 17 marks

1 mark

1 mark

2 marks