THE HEFFERNAN GROUP

P.O. Box 1180 Surrey Hills North VIC 3127 Phone 03 9836 5021

info@theheffernangroup.com.au www.theheffernangroup.com.au Student Name.....

MATHEMATICAL METHODS UNITS 3 & 4

TRIAL EXAMINATION 1

2024

Reading Time: 15 minutes Writing time: 1 hour

Instructions to students

This exam consists of 9 questions.

All questions should be answered in the spaces provided.

There is a total of 40 marks available.

The marks allocated to each of the questions are indicated throughout.

Students may **not** bring any calculators or notes into the exam.

Where a numerical answer is required, an exact value must be given unless otherwise directed.

Where more than one mark is allocated to a question, appropriate working must be shown. Diagrams in this trial exam are not drawn to scale.

A formula sheet can be found on the last page of this exam.

This paper has been prepared independently of the Victorian Curriculum and Assessment Authority to provide additional exam preparation for students. Although references have been reproduced with permission of the Victorian Curriculum and Assessment Authority, the publication is in no way connected with or endorsed by the Victorian Curriculum and Assessment Authority.

© THE HEFFERNAN GROUP 2024

This Trial Exam is licensed on a non transferable basis to the purchasing school. It may be copied by the school which has purchased it. This license does not permit distribution or copying of this Trial Exam by any other party.

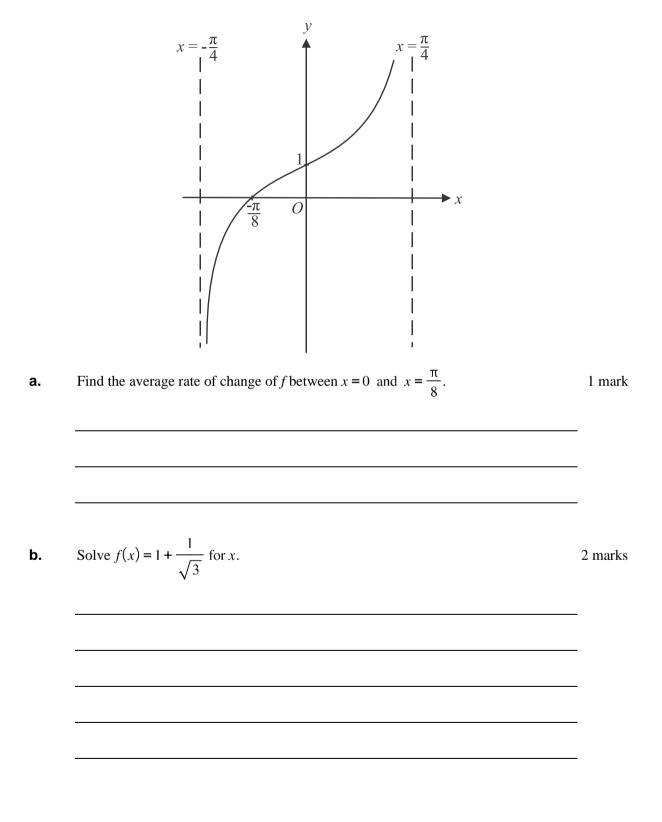
Question 1 (3 marks)

a. Let
$$y = cos(1 - x^2)$$
.
Find $\frac{dy}{dx}$.
b. If $f(x) = \frac{sin(2x)}{1 + e^{2x}}$, find $f'(0)$.
c. 2 marks

Question 2 (3 marks)

Let
$$f:(-1, \infty) \rightarrow R$$
, $f(x) = \log_e(x+1)$ and $g: R \rightarrow R$, $g(x) = x^2$.

a. Find
$$(f \circ g)(x)$$
.


1 mark

b. State the domain and range of $(f \circ g)(x)$.

2 marks

Question 3 (5 marks)

Let $f:\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \rightarrow R$, $f(x) = \tan(2x) + 1$. Part of the graph of *f* is shown below.

Let
$$g:\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \rightarrow R, \quad g(x) = f(-x) - 2.$$

C. Sketch the graph of g on the axes shown on page 4. Label any axis intercepts with their coordinates. 2 marks

Question 4 (4 marks)

a. Evaluate
$$\int_{0}^{e^{-1}} \frac{3}{x+1} dx$$
. 2 marks

Question 5 (4 marks)

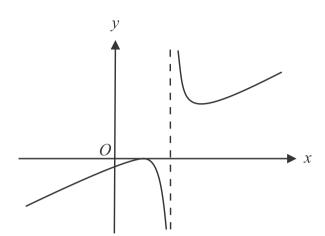
Let
$$y = x^2 \log_e(2x)$$
.
a. Find $\frac{dy}{dx}$. 1 mark

b. Hence find the average value of the function $f(x) = x \log_e(2x)$ over the interval

 $x \in \left[\frac{1}{2}, 1\right].$

Express your answer in the form $\log_e(a) - \frac{b}{a^3}$, where $a, b \in Z^+$. 3 marks

Question 6 (2 marks)


For random samples of four check-outs at a certain brand of supermarkets, \hat{P} is the random variable that represents the proportion of check-outs that are occupied by customers.

It is known that $Pr(\hat{P}=0) = 0.25$.

Find the expected value of the proportion $E(\hat{P})$.

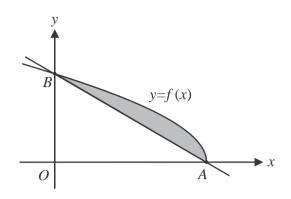
Question 7 (4 marks)

Consider the function f with rule $f(x) = x + \frac{1}{x-2}$. Part of the graph of f is shown below.

Question 8 (7 marks)

A random variable X has the probability density function f given by

$$f(x) = \begin{cases} e^{x} - 1 & 0 \le x \le a \\ 6e^{-x} & a < x \le b \\ 0 & \text{elsewhere} \end{cases}$$


where *a* and *b* are real constants. The function is continuous at x = a.

a. Show that $a = \log_e(3)$. 2 marks

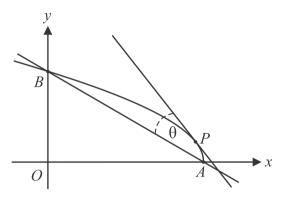
Evaluate Pr(a < X < b). b. i. 2 marks ii. Hence find the value of b. Express your answer in the form $b = \log_e \left(\frac{m}{n - \log_e(n)} \right)$ where $m, n \in N$ 3 marks

Question 9 (8 marks)

Consider the function $f:(-\infty, 3] \rightarrow R$, $f(x) = \sqrt{3-x}$. Part of the graph of f is shown below.

The points A and B represent the x and y intercepts of f respectively. The shaded region between y = f(x) and the straight line that passes through points A and B is also shown.

a.	Show that the equation of the line through <i>A</i> and <i>B</i> is given by $y = -\frac{\sqrt{3}}{3}x + \sqrt{3}$.	2 marks


b. Find the area of the shaded region.

2 marks

с.	Find the rule for the derivative of <i>f</i> .	1 mark

The point P(x, f(x)) lies on the graph of f.

Let θ be the angle between the line *AB* and the tangent to *f* at *P* such that $0^{\circ} < \theta < 60^{\circ}$ as shown in the diagram below.

d. Find the coordinates of *P* when $\theta = 30^{\circ}$.

 $\theta = 30^{\circ}$.

Mathematical Methods formula sheet

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2h$		

Calculus

$\frac{d}{dx}\left(x^{n}\right) = nx^{n-1}$		$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$	
$\frac{d}{dx}((ax+b)^n) = a$	$n(ax+b)^{n-1}$	$\int (ax+b)^n dx = \frac{1}{a(a)}$	$\frac{1}{n+1}(ax+b)^{n+1}+c, n \neq -1$
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + \frac{1}{a}$	с
$\frac{d}{dx} \left(\log_e(x) \right) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + \frac{1}{2} \log_e(x)$	<i>c</i> , <i>x</i> >0
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$	
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$	
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a \sec^2(ax)$			
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$	Newton's method	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
trapezium rule approximation $Area \approx \frac{x_n - x_0}{2n} [f(x_0) + 2j]$		$f(x_1) + 2f(x_2) + \dots$	$+2f(x_{n-2})+2f(x_{n-1})+f(x_n)$]

Probability

$\Pr(A) = 1 - \Pr(A')$		$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$	
$\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)}$			
mean	$\mu = \mathrm{E}(X)$	variance	$\operatorname{var}(X) = \sigma^{2} = \operatorname{E}((X - \mu)^{2}) = \operatorname{E}(X^{2}) - \mu^{2}$
binomial coefficient	$\binom{n}{x} = \frac{n!}{x!(n-x)!}$		

Probability distribution		Mean	Variance
discrete	Pr(X=x) = p(x)	$\mu = \Sigma x p(x)$	$\sigma^2 = \Sigma \left(x - \mu \right)^2 p(x)$
binomial	$\Pr(X=x) = \binom{n}{x} p^{x} (1-p)^{n-x}$	$\mu = np$	$\sigma^2 = np(1-p)$
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p} - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p} + z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

Mathematics Formula Sheets reproduced by permission; © VCAA. The VCAA does not endorse or make any warranties regarding this study resource. Past VCAA VCE® exams and related content can be accessed directly at www.vcaa.vic.edu.au

End of formula sheet