THE GROUP HEFFERNAN

SURVEY Hills North VIC 3127
 SOLUTIONS P.O. Box 1180 Phone 03 9836 5021

 2024 info@theheffernangroup.com.au www.theheffernangroup.com.au

SECTION A – Multiple-choice answers

 MATHS METHODS 3 & 4 TRIAL EXAMINATION 2

SECTION A – Multiple-choice solutions

Question 1

The amplitude is 2. Note that the amplitude is always positive. The period is $\frac{2\pi}{4} = \frac{\pi}{2}$. The answer is D.

Question 2

 $d_f = d_g \cap d_h$ $= [-3, 1]$

The answer is C.

Question 3

 $x^2 - 6x + k = 0$ is a quadratic equation in the variable *x*. It will have two real solutions when the discriminant is greater than zero.

 \wedge > 0 $b^2 - 4ac > 0$ where $a = 1$, $b = -6$, $c = k$ $36 - 4k > 0$ $-4k > -36$ $k < 9$ i.e. $k \in (-\infty, 9)$ The answer is A.

Define $f(x)$ on your CAS.

Solve $f(x) = 0$ for $x > 0$ to find the actual intercept.

 $x=2\sqrt{2}$ $= 2.82842...$ $= 2.8284$ (correct to 4 decimal places)

Define $f'(x)$ on your CAS and use Newton's method to find an approximation.

$$
x_0 = 2
$$

\n
$$
x_1 = 2 - \frac{f(2)}{f'(2)}
$$
 {formula sheet i.e. $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
\n= 2.77976...
\n= 2.7798 (correct to 4 decimal places) so reject option *A*
\n
$$
x_2 = 2.77976... - \frac{f(2.77976...)}{f'(2.77976...)}
$$

\n= 2.82828...
\n= 2.8283 (correct to 4 decimal places) so reject option *B*
\n
$$
x_3 = 2.82828... - \frac{f(2.82828...)}{f'(2.82828...)}
$$

\n= 2.82842...
\n= 2.8284 (correct to 4 decimal places)

The answer is C.

Question 5

Method 1

 $6x + 2ay = 3$ can be rearranged to give $y = -\frac{3}{a}x + \frac{3}{2a}$ $(a \neq 0)$ $3ax + y = a$ can be rearranged to give $y = -3ax + a$

There is **no** unique solution when the gradients are equal, i.e. when

$$
-\frac{3}{a} = -3a
$$

$$
3a^2 = 3
$$

$$
a = \pm 1
$$

Therefore, there is a unique solution when $a \neq \pm 1$, i.e. when $a \in R \setminus \{-1, 1\}$. The answer is D.

Method 2

$$
6x + 2ay = 3
$$

$$
3ax + y = a
$$

As a matrix equation, this system can be written as

$$
\left[\begin{array}{cc} 6 & 2a \\ 3a & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 3 \\ a \end{array}\right]
$$

There will be no solution or infinite solutions when

$$
6 - 6a2 = 0
$$

6(1 - a²) = 0

$$
a = \pm 1
$$

When $a = -1$, the system becomes

$$
6x - 2y = 3
$$
 (A)
-3x + y = -1 (B)
(B) x - 2 6x - 2y = 2 (C)

Comparing equations (*A*) and (*C*) we see that there are no solutions when $a = -1$. When $a = 1$, the system becomes

$$
6x + 2y = 3
$$

\n
$$
3x + y = 1
$$

\n
$$
6x + 2y = 2
$$

\n
$$
(A)
$$

\n
$$
(B)
$$

\n
$$
(C)
$$

Comparing equations (*A*) and (*C*) we see that there are no solutions when $a = 1$. There will be a unique solution when $a \in R \setminus \{-1, 1\}$. The answer is D.

Question 6

 $(B) \times 2$

$$
f: [-a, a] \rightarrow R, f(x) = \sin\left(\frac{1}{2}\left(x - \frac{\pi}{4}\right)\right)
$$

For f^{-1} to exist, f must be 1 : 1.
The period of f is $2\pi \div \frac{1}{2} = 4\pi$.
So f is 1 : 1 over the interval $\left[\frac{\pi}{4} - \pi, \frac{\pi}{4} + \pi\right] = \left[-\frac{3\pi}{4}, \frac{5\pi}{4}\right]$.

So the maximum value of a is $\frac{3\pi}{4}$.

 $f: [-a, a] \rightarrow R, f(x) = \sin\left(\frac{1}{2}\left(x - \frac{\pi}{4}\right)\right)$
 $\left(-\frac{3\pi}{4}, -1\right)$

You can double-check by finding the min/max points on the graph of *f* between say -2π and 2π , i.e. solve $\left(\frac{d}{dx}f(x)=0, x\right)|-2\pi < x < 2\pi$ $x = -\frac{3\pi}{4}$ or $x = \frac{5\pi}{4}$

Note that the left endpoint of the domain of *f* cannot equal $-\frac{5\pi}{4}$ because *f* must be 1:1. The answer is B.

$$
h(x) = g(x - 1) = 4 - (x - 1)^2
$$

Sketch the graph of *h*, noting that $d_h = [-2, 3)$.

$$
r_h = [-5, 4]
$$

The answer is D.

Question 8

For the graph to be continuous at $x = 0$ we require that

 $e^{a \times 0} = b - e^{0}$ $1 = b - 1$ $b=2$ For the graph to be smooth at $x = 0$, we require that At $x = 0$, $a \times 1 = 1$ $a=1$

The answer is D.

Question 9

$$
\int_{2}^{3} (f(x) - 2x) dx
$$

= $\int_{2}^{3} f(x) dx - \int_{2}^{3} 2x dx$
= $\int_{2}^{5} f(x) dx - \int_{3}^{5} f(x) dx - \left[\frac{2x^{2}}{2} \right]_{2}^{3}$
= $1 - 2 - (9 - 4)$
= -2

The answer is C.

Question 10

$$
y = \frac{f(x)}{g(x)}
$$

\n
$$
\frac{dy}{dx} = \frac{g(x) \times f'(x) - f(x) \times g'(x)}{(g(x))^2}
$$
 (quotient rule)
\nAt $x = 4$,
$$
\frac{dy}{dx} = \frac{-1 \times -2 - 3 \times 5}{(-1)^2}
$$

\n $= -13$
\nThe answer is B.

Method 1 – trial and error and CAS $(1 -$ Prop z Interval)

 $x = 15$, $n = 90$ (i.e. 15 out of 90 surveyed residents owned a pet)

75% confidence interval $= (0.1215, 0.2119)$ 80% confidence interval $= (0.1163, 0.2170)$ So $p = 80$. The answer is B.

Method 2 – set up and solve an appropriate equation

 $\hat{p} = \frac{1}{6}$

The right endpoint of the interval is 0.2170. (You could also use the left endpoint.)

Solve $\frac{1}{6} + k \sqrt{\frac{\frac{1}{6} \times \frac{5}{6}}{90}} = 0.2170$ for k. (formula sheet) $k=1.2813$ (correct to 4 decimal places)

 $Pr(-1.2813 < Z < 1.2813) = 0.7999$ (correct to 4 decimal places)

Therefore, this confidence interval has closest to an 80% level of confidence, so $p = 80$. The answer is B.

Question 12

Since *A* and *B* are independent

• •

We are told that $Pr(A) = 3Pr(B)$ and $Pr(A \cup B) = 0.37$

$$
Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)
$$
 (formula sheet)
0.37 = 3
$$
Pr(B) + Pr(B) - Pr(A) \times Pr(B)
$$

0.37 = 3
$$
Pr(B) + Pr(B) - 3[Pr(B)]^2
$$

Let Pr(B) = x. $0.37 = 3x + x - 3x^2$

Solving for *x* gives $x = 0.1$, so $Pr(B) = 0.1$ Note that $Pr(B)$ cannot be greater than 1.

So Pr(A) = $3 \times 0.1 = 0.3$

Therefore $Pr(A|B) = Pr(A)$ The answer is C.

invNorm $(0.9, 0, 1)$ so $z = 1.2816$ (correct to 4 decimal places)

invNorm $(0.15, 0, 1)$ so $z = -1.0364$ (correct to 4 decimal places)

Using $z = \frac{x - \mu}{\sigma}$ and solving simultaneously:

$$
1.2816 = \frac{66 - \mu}{\sigma} \qquad (1)
$$

 $-1.0364 = \frac{56 - \mu}{\sigma}$ (2) So μ = 60.4710..., σ = 4.3140... The closest value of the mean is 60.5.

The answer is B.

Question 14
trapezium($x^2 + 1$, 0, 3, 3), i.e. $f(x) = x^2 + 1$, $a = 0$, $b = 3$ and $n = 3$ so therefore $h = \frac{3 - 0}{3} = 1$

Note that $i \le n$ i.e. $i \le 3$ so we stop at $i = 2$.

The next instruction is: area estimate \longleftarrow total \times (h ÷ 2)

So area estimate = $25 \times (1 \div 2) = \frac{25}{2}$.

The output gives this area estimate, so the output is $\frac{25}{2}$. The answer is B.

Question 15
Pr($S = 2|S \ge 1$) = $\frac{\Pr(S = 2)}{1 - \Pr(S = 0)}$ $Pr(S=2) = \frac{{}^{5}C_2 \times {}^{4}C_2}{{}^{9}C_4}$ and $1 - Pr(S=0) = 1 - \frac{{}^{5}C_0 \times {}^{4}C_4}{{}^{9}C_4}$ $=\frac{10\times 6}{126}$ $= 1 - \frac{1 \times 1}{126}$ $=\frac{125}{126}$ $=\frac{10}{21}$ Therefore Pr($S = 2lS \ge 1$) = $\frac{10}{21} \div \frac{125}{126}$ $=\frac{12}{25}$

The answer is C.

Question 16

$$
\Pr\left(\hat{P} > \frac{1}{n}\right) = \Pr\left(\frac{X}{n} > \frac{1}{n}\right) \qquad \text{Note that } \hat{P} = \frac{X}{n} \quad \text{(formula sheet)} \text{ and } X \sim \text{Binomial}\left(n = ?, \ p = \frac{1}{3}\right)
$$
\n
$$
= \Pr(X > 1)
$$
\n
$$
= \Pr(X \ge 2)
$$
\n
$$
\ge 0.85
$$

Method 1 – using the formula for binomial probability distribution

 $Pr(X \ge 2) = 1 - [Pr(X = 0) + Pr(X = 1)] \ge 0.85$ $Pr(X=0) + Pr(X=1) \le 0.15$

$$
{}^{n}C_{0}\left(\frac{1}{3}\right)^{0}\left(\frac{2}{3}\right)^{n} + {}^{n}C_{1}\left(\frac{1}{3}\right)^{1}\left(\frac{2}{3}\right)^{n-1} = 0.15
$$

$$
n = 8.84...
$$

 $\rm So$

 $n = 9$

The answer is D.

Method 2 – trial and error

If
$$
n = 6
$$
, $Pr(X \ge 2) = 0.6488...$

If
$$
n = 7
$$
, $Pr(X \ge 2) = 0.7366...$

If
$$
n = 8
$$
, $Pr(X \ge 2) = 0.8049...$

The smallest value of *n* is 9. The answer is D.

binomCdf
$$
(6, \frac{1}{3}, 2, 6)
$$

binomCdf $(7, \frac{1}{3}, 2, 7)$
binomCdf $(8, \frac{1}{3}, 2, 8)$
binomCdf $(9, \frac{1}{3}, 2, 9)$

Solve
$$
\frac{d}{dx} \left(2\tan\left(\frac{x}{2}\right) + 3 \right) = 2
$$
 for x.

$$
x = \frac{(8k-1)\pi}{2}, \frac{(8k+1)\pi}{2}, \frac{(8k-3)\pi}{2}, \frac{(8k+3)\pi}{2}, k \in \mathbb{Z}
$$

Two of these options are given in option D but two are missing and we are asked for **all** the possible values of *x*, so eliminate option D.

Note that
$$
\frac{d}{dx} \left(2\tan\left(\frac{x}{2}\right) + 3 \right) = \frac{1}{\cos^2\left(\frac{x}{2}\right)}
$$

\nSolve $\frac{1}{\cos^2\left(\frac{x}{2}\right)} = 2$
\n $\cos^2\left(\frac{x}{2}\right) = \frac{1}{2}$
\n $\cos\left(\frac{x}{2}\right) = \pm \frac{1}{\sqrt{2}}$
\n $\frac{1}{\cos\left(\frac{x}{2}\right)} = \pm \frac{1}{\sqrt{2}}$
\n $\frac{1}{\cos\left(\frac{x}{2}\right)} = \pm \frac{1}{\sqrt{2}}$
\n $\frac{1}{\cos\left(\frac{x}{2}\right)} = \pm \frac{1}{\sqrt{2}}$

We require $\frac{x}{2} = \pm \frac{\pi}{4}$, $\pm \frac{3\pi}{4}$ or alternatively, $\frac{x}{2} = k\pi \pm \frac{\pi}{4}$, $k \in \mathbb{Z}$, because we need a solution in each quadrant. So $x = 2k\pi \pm \frac{\pi}{2}$, $k \in \mathbb{Z}$.

The answer is A.

Question 18

Sketch the graph of $y = f(x)$.

The graph of $f(x - k)$ translates the graph of $f(x)$ *k* units to the right when *k* is positive. It translates the graph of $f(x)$ *k* units to the left when *k* is negative.

For there to be at least two stationary points with positive *x*-coordinates, the graph of $f(x)$ can be translated up to 11.03… units to the left. Any further left and there will be less than two stationary points with a positive *x*-coordinate.

In other words, how far left can we translate the graph of *f* so that two of its stationary points remain to the right of the *y-*axis?

We require $k > -11.03...$

Since $-4\pi < -11.03...$ i.e. $-4\pi = -12.5663...$ then -4π is not a possible value of *k*. The answer is A.

A normal distribution is a continuous probability distribution so $g(x)$ cannot be negative and so $a > 0$. Reject option A.

The standard deviation of *X* is half the standard deviation of *Y* or alternatively put, the standard deviation of *Y* is twice the standard deviation of *X*.

Therefore, the graph of *f* will be dilated from the *y*-axis by a factor of 2 to become the graph of *g*. So *b* could equal 2.

Option B is the only option that satisfies these requirements for $a > 0$ and $b = 2$. The answer is B.

Question 20

Given $f(0) = 2$, then $2 = \sqrt{b}$ and $b = 4$. Sketch the graph of $f(x) = \sqrt{ax + 4}$ using sliders. For example:

Note that when $a = 0$, f is a horizontal straight line i.e. a many:1 function, and hence does not have an inverse function so reject option B.

The gradient of *g* is negative (i.e. $g'(x) < 0$) for negative values of *a*, i.e. for $a \in R^-$. The answer is A.

SECTION B

Question 1 (10 marks)

a. Define f on your CAS.
$$
f \text{Max}(f(x), x)
$$
 gives $x = 3$ and $f(3) = 9$
The maximum value occurs at (3, 9). (1 mark)

- **b.** The stationary point is a stationary point of inflection. **(1 mark)** (1 mark)
- **c.** The gradient of the graph of $f(x)$ is positive i.e. $f'(x) > 0$ for $x \in (-\infty, 0) \cup (0, 3)$. (1 mark) Note that $f'(x) = 0$ at $x = 0$ and at $x = 3$.
- **d.** Since $f(x) = 0$ for $x = 0$ and $x = 4$, if the graph of $y = f(x)$ is translated 4 or more units to the left, then it will have no positive *x*-intercepts and hence $f(x + h) = 0$ will have no positive solutions for $h \ge 4$. (1 mark)
- **e.** Since the maximum value of *f* occurs at (3,9) from part **a**., then if the graph of $y = f(x)$ is translated more than 9 units downwards, it will not intersect with the *x*-axis and hence $f(x) + k = 0$ will have no solutions for $k < -9$. (1 mark)

f. Using CAS, tangentLine
$$
(f(x), x, -1)
$$
, the equation is $y = \frac{16}{3}x + \frac{11}{3}$. (1 mark)

g. Since the tangents are parallel, this second tangent has a gradient of $\frac{16}{3}$. 16

Solve
$$
f'(x) = \frac{16}{3}
$$
 for x.
\n $x = -1$ or $x = 2$
\nSo $q = 2$. (1 mark)

h. The gradient of the parallel tangents is $\frac{16}{3}$ so the gradient of the straight line that is perpendicular is $-\frac{3}{16}$. It passes through (0,0) so it's equation is $y - 0 = -\frac{3}{16}(x - 0)$

$$
y = -\frac{3}{16}x
$$
 (1 mark)

Question 2 (12 marks)

Question 3 (15 marks)

a. Let *T* be a normally distributed variable with
$$
\mu = 0
$$
, $\sigma = 5$.
Pr($-2 \le T \le 2$) = 0.31084... use normCdf($-2, 2, 0, 5$)
= 0.3108 (correct to 4 decimal places) (1 mark)

\n- **b.**
$$
Pr(T > k) = 0.05
$$
 or alternatively, $Pr(T < k) = 0.95$. Using the inverse normal function on CAS, i.e. invNorm(0.95, 0, 5).
\n- $k = 8.22426...$ So $k = 8.224$ (correct to 3 decimal places)
\n- (1 mark)
\n

c. i. The manager models a binomial distribution with parameters $n = 6$, $p = 0.5$.

 (1 mark) for one correct point **(1 mark)** for all points correct

ii. *P* is a binomially distributed variable with parameters $n = 6$, $p = 0.5$. $Pr(P \ge 1) = 0.984375$

$$
= 0.9844 \text{ (correct to 4 decimal places)}
$$
 (1 mark)

iii.
$$
Pr(P \le 4 | P \ge 1)
$$
 (conditional probability) (1 mark)
=
$$
\frac{Pr(1 \le P \le 4)}{Pr(P \ge 1)}
$$

=
$$
\frac{0.875}{0.984375}
$$

= 0.8889 (correct to 4 decimal places) (1 mark)

i.
$$
0.8 + m + n = 1
$$

\n
$$
n = \frac{1}{5} - m
$$
\n
$$
E(X) = 0 \times 0.8 + 1 \times m + 2 \times \left(\frac{1}{5} - m\right) = \frac{2}{5} - m
$$
\n
$$
E(X^2) = 0^2 \times 0.8 + 1^2 \times m + 2^2 \times \left(\frac{1}{5} - m\right) = \frac{4}{5} - 3m
$$
\n
$$
Var(X) = E(X^2) - [E(X)]^2 \qquad \text{(formula sheet)}
$$
\n
$$
= \frac{4}{5} - 3m - \left(\frac{2}{5} - m\right)^2
$$
\n
$$
= -m^2 - \frac{11}{5}m + \frac{16}{25}
$$
\n(1 mark)

ii. The graph of the function defining the variance is part $(0,0.64)$
 $(0.2,0.16)$ of an inverted parabola. From the table, $m \ge 0$ and $n \ge 0$ therefore $0 \le m \le 0.2$ This is the domain of the variance function. The maximum variance therefore occurs when $m = 0$. The maximum variance is therefore $\frac{16}{25}$ or 0.64. **(1 mark)**

e.
\n**i.**
$$
\hat{p} = \frac{0.1752 + 0.2248}{2} = 0.2
$$
 (1 mark)
\n0.2248 - 0.2 = 0.0248 (which is the margin of error)
\n95% confidence interval for *p* is $(\hat{p} \pm 1.96\hat{\sigma})$ $\left(\text{where } \hat{\sigma} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$
\n1.96 $\hat{\sigma} = 0.0248$ so $\hat{\sigma} = 0.0127$ (to 4 decimal places) (1 mark)

$$
i\mathbf{i}.\qquad \qquad \text{margin of error} = 1.96\sqrt{\frac{0.2 \times 0.8}{n}}
$$

We require
$$
1.96\sqrt{\frac{0.2 \times 0.8}{n}} \le 0.75 \times 0.0248
$$
 (1 mark)

 $n = 1777$ (to the nearest integer) (1 mark)

d. i.

Question 4 (13 marks)

a. For *g* to exist, $3 - x > 0$, $x < 3$ so $D = (-\infty, 3)$. (1 mark)

b. Do a quick sketch.

area required =
$$
\int_0^2 (f(x) - g(x)) dx
$$
 (1 mark)
$$
= \log_e \left(\frac{3125}{729} \right)
$$
 (1 mark)

Note, because you haven't been asked to

express your answer correct to a certain

number of decimal places, you must leave your answer as an exact value.

c.
\ni.
$$
h(x) = f(x) + g(x)
$$

\n
$$
= \log_e(x+3) + \log_e(3-x)
$$
\n
$$
= \log_e(x+3)(3-x) \qquad \text{(log laws)}
$$
\n
$$
= \log_e(9-x^2) \qquad \text{as required}
$$
\n(1 mark)

\n- \n**ii.**\n
$$
d_f = [0, \infty)
$$
 and $d_g = (-\infty, 3)$ \n The intersection of these two intervals is $[0, 3)$ so $d_h = [0, 3)$.\n
\n- \n The maximum value of $h(x)$ over this domain occurs when $x = 0$.\n Now $h(0) = \log_e(9)$ and as $x \to 3$ (from below), $h(x) \to -\infty$ \n So $r_h = (-\infty, \log_e(9))$ \n
\n- \n (1 mark)\n
\n

iii.
$$
h(x) = \log_e(9 - x^2)
$$

Let $y = \log_e(9 - x^2)$
Swap *x* and *y* for inverse.
 $x = \log_e(9 - y^2)$

Now make *y* the subject.

$Method 1 - by hand$
$e^{x} = 9 - y^{2}$
$y^{2} = 9 - e^{x}$
$y = \pm \sqrt{9 - e^{x}}$ but $r_{h^{-1}} = d_{h} = [0, 3)$
$So y = \sqrt{9 - e^{x}}$
$h^{-1}(x) = \sqrt{9 - e^{x}}$

\n(1 mark)

Method 2	- using CAS
Solve $x = \log_e(9 - y^2)$ for y .	
$y = \pm \sqrt{9 - e^x}$ but $r_{h^{-1}} = d_h = [0, 3)$	
So	$y = \sqrt{9 - e^x}$
$h^{-1}(x) = \sqrt{9 - e^x}$	

\n(1 mark)

d. By inspection, it is seen that the graphs of $y = h(x)$ and $y = h^{-1}(x)$ intersect on the line $y = x$, so the point of intersection is (p, p) .

The average value of the function $h(x)$ over the interval $[0, p]$ is $\frac{1}{p-0} \int_0^p h(x) dx$.

The graphs of $y = h(x)$ and $y = h^{-1}(x)$ are reflections of each other in the line $y = x$. Therefore, the shaded areas shown below are equal in area.

So
$$
\int_{0}^{p} h(x)dx = p^{2} + \int_{p}^{\log_{e}(9)} h^{-1}(x)dx
$$

So required average value expression
$$
= \frac{1}{p} \left(p^{2} + \int_{p}^{\log_{e}(9)} h^{-1}(x)dx \right)
$$
(1 mark)

(1 mark)

e. Solve $j_a(x) = 0$ for x using CAS.

$$
x = \pm \sqrt{a^2 - 1}
$$

We require $x < 0$ so $x = -\sqrt{a^2 - 1}$.
So Q is the point $\left(-\sqrt{a^2 - 1}, 0\right)$.

$$
j'_a(x) = \frac{2x}{x^2 - a^2}
$$

$$
j'_a(-\sqrt{a^2 - 1}) = \frac{-2\sqrt{a^2 - 1}}{-1}
$$

$$
= 2\sqrt{a^2 - 1}
$$
(1 mark)

f. Let θ be the angle that the tangent to $j_a(x)$ at Q makes with the positive branch of the *x*-axis.

Using our answer to part **e.**,
$$
2\sqrt{a^2 - 1} = \tan(\theta)
$$

\nWe require $2\sqrt{a^2 - 1} < \tan(45^\circ)$ (1 mark)
\n $2\sqrt{a^2 - 1} < 1$
\nUsing CAS $-\frac{\sqrt{5}}{2} < a \le -1$ or $1 \le a < \frac{\sqrt{5}}{2}$ but $a > 1$ (given in question)
\nso $1 < a < \frac{\sqrt{5}}{2}$ (1 mark)

Question 5 (10 marks)

\n- **a.** The period of
$$
y = \sin(x)
$$
 is 2π . The period of $y = \cos\left(\frac{x}{3}\right)$ is $\frac{2\pi}{1/3} = 6\pi$. It is required that the graphs of the two functions above simultaneously repeat. Therefore, the least common multiple of 2 and 6 is required, and the least common multiple is 6. Therefore, the graphs of the two functions simultaneously repeat after 6π.
\n- **b.** Graph *f* on your CAS. Make sure that the coordinates of the points on the graph are expressed to at least 4 decimal places on your CAS. One of the maximum values of *f* is 1.879, correct to 3 decimal places. (1 mark)
\n- **c.** To obtain the graph of $y = -f(x + c)$, the graph of *f* is translated *c* units to the left (since *c* is positive) and then reflected in the *x*-axis. The smallest positive value of *c* for which the graph of $y = -f(x + c)$ will coincide
\n

with the graph of f is 3π .

For example, the point $(3\pi, -1)$ on the graph of *f* becomes the point $(0, 1)$ on the graph of $y = -f(x + c)$. So $c = 3\pi$. (1 mark)

d. Solve
$$
\int_0^q f(x) dx = 0 \text{ for } q \text{ where } q > 0
$$
 (1 mark)

 $q = 10.7289...$, 18.8495..., and so on

The smallest possible value of q is 10.73 (correct to two decimals places). $(1 mark)$

e. The period of
$$
y = \sin(ax)
$$
 is $\frac{2\pi}{a}$.
The period of $y = \cos\left(\frac{x}{3a}\right)$ is $\frac{2\pi}{1/3a} = 6a\pi$.

The least common multiple is $6a\pi$.

So the period of the functions f_a is $6a\pi$. (1 mark)

f. i. The maximum value of
$$
y = \sin(ax)
$$

\noccurs at $x = \frac{\pi}{2a} + \frac{2\pi k}{a}$, $k \in \mathbb{Z}$
\n
$$
= \frac{\pi + 4\pi k}{2a}
$$
\n
$$
= \frac{\pi(1 + 4k)}{2a}
$$
\n
$$
= 6an\pi
$$
\n
$$
y = \sin(ax)
$$
\n
$$
\frac{3\pi}{2a} \int_{a}^{2\pi} x \, dx
$$
\n
$$
y = \cos(\frac{x}{3a})
$$

g. For $f_a(x) = 2$, we would require that the maximum value of $sin(ax)$, which is 1, occurred at the same *x* value as where the maximum value of $cos\left(\frac{x}{3a}\right)$, which is also 1, occurred at. Therefore, we would require that $\frac{\pi(1+4k)}{2a} = 6an\pi$, $k, n \in \mathbb{Z}$ (1 mark) $a^2 = \frac{4k+1}{12n}$ which leads to Now $4k + 1$ is odd and $12n$ is even therefore $\frac{4k + 1}{12n}$ is never an integer for $k, n \in \mathbb{Z}$, therefore $\frac{4k+1}{12n}$ is never a perfect square, therefore *a* is never a positive integer.

(1 mark)

Therefore, the maximum value of $f_a(x)$ cannot be 2. **(1 mark)**