THE HEFFERNAN GROUP

P.O. Box 1180 Surrey Hills North VIC 3127 Phone 03 9836 5021

info@theheffernangroup.com.au www.theheffernangroup.com.au

SECTION A – Multiple-choice answers

1.	D	6.	В	11.	В	16.	D
2.	С	7.	D	12.	С	17.	А
3.	А	8.	D	13.	В	18.	А
4.	С	9.	С	14.	В	19.	В
5.	D	10.	В	15.	С	20.	А
3. 4. 5.	C D	8. 9. 10.	C B	13. 14. 15.	B B C	19. 20.	A B A

MATHS METHODS 3 & 4

TRIAL EXAMINATION 2

SOLUTIONS

2024

SECTION A – Multiple-choice solutions

Question 1

The amplitude is 2. Note that the amplitude is always positive. The period is $\frac{2\pi}{4} = \frac{\pi}{2}$. The answer is D.

Question 2

 $d_f = d_g \cap d_h$ = [-3, 1]

The answer is C.

Question 3

 $x^2 - 6x + k = 0$ is a quadratic equation in the variable x. It will have two real solutions when the discriminant is greater than zero.

 $\Delta > 0$ $b^{2}-4ac > 0 \text{ where } a = 1, b = -6, c = k$ 36-4k > 0 -4k > -36 k < 9i.e. $k \in (-\infty, 9)$ The answer is A.

Define f(x) on your CAS.

Solve f(x) = 0 for x > 0 to find the actual intercept.

 $x = 2\sqrt{2}$ = 2.82842... = 2.8284 (correct to 4 decimal places)

Define f'(x) on your CAS and use Newton's method to find an approximation.

$$\begin{aligned} x_0 &= 2 \\ x_1 &= 2 - \frac{f(2)}{f'(2)} \\ &= 2.77976... \\ &= 2.7798 \text{ (correct to 4 decimal places)} \text{ so reject option } A \\ x_2 &= 2.77976... - \frac{f(2.77976...)}{f'(2.77976...)} \\ &= 2.82828... \\ &= 2.82828... \\ &= 2.82828... \\ &= 2.82828... - \frac{f(2.82828...)}{f'(2.82828...)} \\ &= 2.82842... \\ &= 2.8284 \text{ (correct to 4 decimal places)} \end{aligned}$$

The answer is C.

Question 5

Method 1

6x + 2ay = 3 can be rearranged to give $y = -\frac{3}{a}x + \frac{3}{2a}$ $(a \neq 0)$ 3ax + y = a can be rearranged to give y = -3ax + a

There is no unique solution when the gradients are equal, i.e. when

$$\frac{3}{a} = -3a$$
$$3a^2 = 3$$
$$a = \pm 1$$

Therefore, there is a unique solution when $a \neq \pm 1$, i.e. when $a \in R \setminus \{-1, 1\}$. The answer is D. Method 2

$$6x + 2ay = 3$$
$$3ax + y = a$$

As a matrix equation, this system can be written as

$$\begin{bmatrix} 6 & 2a \\ 3a & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ a \end{bmatrix}$$

There will be no solution or infinite solutions when

$$6-6a^2 = 0$$

$$6(1-a^2) = 0$$

$$a = \pm 1$$

When a = -1, the system becomes

$$6x - 2y = 3 (A)
- 3x + y = -1 (B)
(B) \times -2 6x - 2y = 2 (C)$$

Comparing equations (A) and (C) we see that there are no solutions when a = -1. When a = 1, the system becomes

Comparing equations (*A*) and (*C*) we see that there are no solutions when a = 1. There will be a unique solution when $a \in R \setminus \{-1, 1\}$. The answer is D.

Question 6

 $(B) \times 2$

$$f:[-a, a] \rightarrow R, f(x) = \sin\left(\frac{1}{2}\left(x - \frac{\pi}{4}\right)\right)$$

For f^{-1} to exist, f must be 1 : 1.
The period of f is $2\pi \div \frac{1}{2} = 4\pi$.
So f is 1 : 1 over the interval $\left[\frac{\pi}{4} - \pi, \frac{\pi}{4} + \pi\right] = \left[-\frac{3\pi}{4}, \frac{5\pi}{4}\right]$.
So the maximum value of a is $\frac{3\pi}{4}$.

You can double-check by finding the min/max points on the graph of f between say -2π and 2π , i.e. solve $\left(\frac{d}{dx}f(x)=0, x\right)|-2\pi < x < 2\pi$ $x = -\frac{3\pi}{4}$ or $x = \frac{5\pi}{4}$

Note that the left endpoint of the domain of f cannot equal $-\frac{5\pi}{4}$ because f must be 1:1. The answer is B.

$$h(x) = g(x-1) = 4 - (x-1)^2$$

Sketch the graph of *h*, noting that $d_h = [-2, 3]$.

$$r_h = [-5, 4]$$

The answer is D.

Question 8

For the graph to be continuous at x = 0 we require that

 $e^{a \times 0} = b - e^{0}$ 1 = b - 1 b = 2For the graph to be smooth at x = 0, we require that $\frac{d}{dx}(e^{ax}) = \frac{d}{dx}(2 - e^{-x})$ $ae^{ax} = e^{-x}$ At x = 0, $a \times 1 = 1$ a = 1

The answer is D.

Question 9

$$\int_{2}^{3} (f(x) - 2x) dx$$

= $\int_{2}^{3} f(x) dx - \int_{2}^{3} 2x dx$
= $\int_{2}^{5} f(x) dx - \int_{3}^{5} f(x) dx - \left[\frac{2x^{2}}{2}\right]_{2}^{3}$
= $1 - \frac{2}{2} - (9 - 4)$
= -2

The answer is C.

Question 10

$$y = \frac{f(x)}{g(x)}$$

$$\frac{dy}{dx} = \frac{g(x) \times f'(x) - f(x) \times g'(x)}{(g(x))^2} \quad (\text{quotient rule})$$
At $x = 4$, $\frac{dy}{dx} = \frac{-1 \times -2 - 3 \times 5}{(-1)^2}$

$$= -13$$
The answer is B.

Method 1 – trial and error and CAS (1 – Prop z Interval)

x = 15, n = 90 (i.e. 15 out of 90 surveyed residents owned a pet)

75% confidence interval = (0.1215, 0.2119)80% confidence interval = (0.1163, 0.2170)So p = 80. The answer is B.

Method 2 – set up and solve an appropriate equation

 $\hat{p} = \frac{1}{6}$

The right endpoint of the interval is 0.2170. (You could also use the left endpoint.)

Solve $\frac{1}{6} + k\sqrt{\frac{\frac{1}{6} \times \frac{5}{6}}{90}} = 0.2170$ for k. (formula sheet) k = 1.2813 (correct to 4 decimal places)

Pr(-1.2813 < Z < 1.2813) = 0.7999 (correct to 4 decimal places)

Therefore, this confidence interval has closest to an 80% level of confidence, so p = 80. The answer is B.

Question 12

Since A and B are independent

• $Pr(A \cap B) = Pr(A) \times Pr(B)$ • Pr(A|B) = Pr(A)

We are told that Pr(A) = 3Pr(B) and $Pr(A \cup B) = 0.37$

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$
 (formula sheet)

$$0.37 = 3Pr(B) + Pr(B) - Pr(A) \times Pr(B)$$

$$0.37 = 3Pr(B) + Pr(B) - 3[Pr(B)]^2$$

Let Pr(B) = x. $0.37 = 3x + x - 3x^2$

Solving for x gives x = 0.1, so Pr(B) = 0.1 Note that Pr(B) cannot be greater than 1.

So $Pr(A) = 3 \times 0.1 = 0.3$

Therefore Pr(A|B) = Pr(A)= 0.3 The answer is C.

invNorm(0.9, 0, 1) so z = 1.2816 (correct to 4 decimal places)

invNorm(0.15, 0, 1) so z = -1.0364 (correct to 4 decimal places)

Using $z = \frac{x - \mu}{\sigma}$ and solving simultaneously:

$$1.2816 = \frac{66 - \mu}{\sigma} \qquad (1)$$
$$-1.0364 = \frac{56 - \mu}{\sigma} \qquad (2)$$

So $\mu = 60.4710..., \quad \sigma = 4.3140...$ The closest value of the mean is 60.5. The answer is B.

Question 14

trapezium($x^2 + 1, 0, 3, 3$), i.e. $f(x) = x^2 + 1$, a = 0, b = 3 and n = 3 so therefore $h = \frac{3-0}{3} = 1$

i	x	total
1	0 + 1 = 1	$f(0) + f(3) + 2 \times f(1) = 15$
2	1 + 1 = 2	$15 + 2 \times f(2) = 25$

Note that i < n i.e. i < 3 so we stop at i = 2.

The next instruction is: area estimate \leftarrow total \times (h \div 2)

So area estimate $=25 \times (1 \div 2) = \frac{25}{2}$.

The output gives this area estimate, so the output is $\frac{25}{2}$. The answer is B.

Question 15 $\Pr(S=2|S\geq 1) = \frac{\Pr(S=2)}{1 - \Pr(S=0)}$ $\Pr(S=2) = \frac{{}^{5}C_{2} \times {}^{4}C_{2}}{{}^{9}C_{4}} \qquad \text{and} \qquad 1 - \Pr(S=0) = 1 - \frac{{}^{5}C_{0} \times {}^{4}C_{4}}{{}^{9}C_{4}}$ $=\frac{10\times 6}{126}$ $=1 - \frac{1 \times 1}{126}$ $=\frac{125}{126}$ $=\frac{10}{21}$ Therefore $\Pr(S=2|S \ge 1) = \frac{10}{21} \div \frac{125}{126}$ $=\frac{12}{25}$

The answer is C.

Question 16

$$\Pr\left(\hat{P} > \frac{1}{n}\right) = \Pr\left(\frac{X}{n} > \frac{1}{n}\right) \qquad \text{Note that } \hat{P} = \frac{X}{n} \quad \text{(formula sheet) and } X \sim \text{Binomial}\left(n = ?, \ p = \frac{1}{3}\right)$$
$$= \Pr(X > 1)$$
$$= \Pr(X \ge 2)$$
$$\ge 0.85$$

Method 1 – using the formula for binomial probability distribution

 $Pr(X \ge 2) = 1 - [Pr(X = 0) + Pr(X = 1)] \ge 0.85$ $Pr(X = 0) + Pr(X = 1) \le 0.15$

$${}^{n}C_{0}\left(\frac{1}{3}\right)^{0}\left(\frac{2}{3}\right)^{n} + {}^{n}C_{1}\left(\frac{1}{3}\right)^{1}\left(\frac{2}{3}\right)^{n-1} = 0.15$$

$$n = 8.84.$$

n = 9

So The answer is D.

<u>Method 2</u> - trial and error

/ \

If
$$n = 6$$
, $\Pr(X \ge 2) = 0.6488...$

If
$$n = 7$$
, $Pr(X \ge 2) = 0.7366...$

If n = 8, $Pr(X \ge 2) = 0.8049...$

If n = 9, $Pr(X \ge 2) = 0.8569...$

The smallest value of *n* is 9. The answer is D.

binomCdf
$$\left(6, \frac{1}{3}, 2, 6\right)$$

binomCdf $\left(7, \frac{1}{3}, 2, 7\right)$
binomCdf $\left(8, \frac{1}{3}, 2, 8\right)$
binomCdf $\left(9, \frac{1}{3}, 2, 9\right)$

Solve
$$\frac{d}{dx}\left(2\tan\left(\frac{x}{2}\right)+3\right)=2$$
 for x.
$$x = \frac{(8k-1)\pi}{2}, \ \frac{(8k+1)\pi}{2}, \ \frac{(8k-3)\pi}{2}, \ \frac{(8k+3)\pi}{2}, \ k \in \mathbb{Z}$$

Two of these options are given in option D but two are missing and we are asked for **all** the possible values of x, so eliminate option D.

Note that
$$\frac{d}{dx}\left(2\tan\left(\frac{x}{2}\right)+3\right) = \frac{1}{\cos^2\left(\frac{x}{2}\right)}$$

Solve $\frac{1}{\cos^2\left(\frac{x}{2}\right)} = 2$
 $\cos^2\left(\frac{x}{2}\right) = \frac{1}{2}$
 $\cos\left(\frac{x}{2}\right) = \pm \frac{1}{\sqrt{2}}$
 $\cos\left(\frac{x}{2}\right) = \pm \frac{1}{\sqrt{2}}$ base angle is $\frac{\pi}{4}$

We require $\frac{x}{2} = \pm \frac{\pi}{4}, \pm \frac{3\pi}{4}$ or alternatively, $\frac{x}{2} = k\pi \pm \frac{\pi}{4}, k \in \mathbb{Z}$, because we need a solution in each quadrant. So $x = 2k\pi \pm \frac{\pi}{2}, k \in \mathbb{Z}$.

The answer is A.

Question 18

Sketch the graph of y = f(x).

The graph of f(x-k) translates the graph of f(x) k units to the right when k is positive. It translates the graph of f(x) k units to the left when k is negative.

For there to be at least two stationary points with positive x-coordinates, the graph of f(x) can be translated up to 11.03... units to the left. Any further left and there will be less than two stationary points with a positive x-coordinate.

In other words, how far left can we translate the graph of f so that two of its stationary points remain to the right of the *y*-axis?

We require *k* > – 11.03...

Since $-4\pi < -11.03...$ i.e. $-4\pi = -12.5663...$ then -4π is not a possible value of k. The answer is A.

A normal distribution is a continuous probability distribution so g(x) cannot be negative and so a > 0. Reject option A.

The standard deviation of X is half the standard deviation of Y or alternatively put, the standard deviation of Y is twice the standard deviation of X.

Therefore, the graph of f will be dilated from the *y*-axis by a factor of 2 to become the graph of g. So b could equal 2.

Option B is the only option that satisfies these requirements for a > 0 and b = 2. The answer is B.

Question 20

Given f(0) = 2, then $2 = \sqrt{b}$ and b = 4. Sketch the graph of $f(x) = \sqrt{ax + 4}$ using sliders. For example:

Note that when a = 0, f is a horizontal straight line i.e. a many:1 function, and hence does not have an inverse function so reject option B.

The gradient of g is negative (i.e. g'(x) < 0) for negative values of a, i.e. for $a \in R^-$. The answer is A.

SECTION B

Question 1 (10 marks)

a. Define f on your CAS.
$$f Max(f(x), x)$$
 gives $x = 3$ and $f(3) = 9$
The maximum value occurs at $(3, 9)$. (1 mark)

- b. The stationary point is a stationary point of inflection.
- The gradient of the graph of f(x) is positive i.e. f'(x) > 0 for $x \in (-\infty, 0) \cup (0, 3)$. (1 mark) c. Note that f'(x) = 0 at x = 0 and at x = 3.
- Since f(x) = 0 for x = 0 and x = 4, if the graph of y = f(x) is translated 4 or more units to the d. left, then it will have no positive x-intercepts and hence f(x+h) = 0 will have no positive solutions for $h \ge 4$. (1 mark)
- Since the maximum value of f occurs at (3,9) from part **a**., then if the graph of y = f(x) is e. translated more than 9 units downwards, it will not intersect with the x-axis and hence f(x) + k = 0 will have no solutions for k < -9. (1 mark) 17 11

f. Using CAS, tangentLine(
$$f(x), x, -1$$
), the equation is $y = \frac{10}{3}x + \frac{11}{3}$. (1 mark)

Since the tangents are parallel, this second tangent has a gradient of $\frac{10}{3}$. g. 16

Solve
$$f'(x) = \frac{10}{3}$$
 for x.
 $x = -1$ or $x = 2$
So $q = 2$.

The gradient of the parallel tangents is $\frac{16}{3}$ so the gradient of the straight line that is h. perpendicular is $-\frac{3}{16}$. It passes through (0,0) so it's equation is $y - 0 = -\frac{3}{16}(x - 0)$

$$-\frac{x}{16}x$$
 (1 mark)

y =

y

(1 mark)

(1 mark)

The equation of the tangent to
$$f$$
 at $x = -1$
is $y = \frac{16}{3}x + \frac{11}{3}$ (from part **f**.)
We need to find the point of intersection of
this tangent and $y = -\frac{3}{16}x$
Solve $\frac{16}{3}x + \frac{11}{3} = -\frac{3}{16}x$ for x .
 $x = -\frac{176}{265}$
(1 mark)
 A is the point $\left(-\frac{176}{265}, \frac{33}{265}\right)$ and B is the point $\left(\frac{256}{265}, -\frac{48}{265}\right)$.
The midpoint of AB is $\left(\frac{8}{53}, -\frac{3}{106}\right)$. (1 mark)

11

Question 2 (12 marks)

a.	Define $f(x)$ on your CAS.							
	i.	<u>x-intercepts</u> occur when $y = 0$						
		Solve $f(x) = 0$ for x. $x = -a, 5a$ $d_f = [-a, 5a]$	(1 mark)					
	ii.	Halfway between $(-a, 0)$ and $(5a, 0)$ is $(2a, 0)$.						
		The equation of the axis of symmetry is $x = 2a$.	(1 mark)					
	iii.	f is strictly increasing for $x \in [-a, 2a]$.	(1 mark)					
b.	Maxin	num height of the tunnel is $f(2a) = 2a^2$.						
	Width of base of tunnel is 6a.							
	Solve $2a^2 < 12a$ for a .							
	$0 \le a \le 6$ or $a \in (0, 6)$							
c.	$g(x) = -\frac{2}{9}(x+2.5)(x-12.5)$							
	$g(0) = -\frac{2}{9} \times 2.5 \times -12.5$							
	$=-\frac{2}{9} \times \frac{5}{2} \times -\frac{25}{2}$							
	=	$\frac{125}{18}$						
	Note that in order to give an exact answer, it is necessary to work in fractions.							
	The height of the platform above the base of the tunnel is 2 metres.							
	So the vertical distance required is $\frac{125}{18} - \frac{36}{18} = \frac{89}{18}$ metres.							
d.	Let the	e distance from $P(x, g(x))$ to $Q(12.5, 0)$ be h.						
	$h = \sqrt{(x - 12.5)^2 + (g(x) - 0)^2}$							
	Solve $\frac{dh}{dx} = 0$ for x.							
	x = -0.7343 or $x = 3.2343$							
	but $x \ge$	≥ 0 , so $x = 3.2343$	(1 mark)					
	h(3.2343) = 15.0087							
	Maximum length of beam of light is 15.0 metres (correct to 1 decimal place)							
e.	Solve	$\int_{0}^{m} g(x) dx - 2 \times 4 = \int_{m}^{12.5} g(x) dx \text{ for } m. \qquad (1 \text{ mark}) \text{ left side (1 mark)}$	right side					
	m = -	-8.3227 or $m = 5.6923$ or $m = 17.6303$	(1 1)					
	But $0 \le m \le 12.5$ so $m = 5.69$ (correct to two decimal places)							

Question 3 (15 marks)

a. Let T be a normally distributed variable with
$$\mu = 0$$
, $\sigma = 5$.
 $Pr(-2 \le T \le 2) = 0.31084...$ use normCdf(-2, 2, 0, 5)
 $= 0.3108$ (correct to 4 decimal places) (1 mark)

b.
$$Pr(T > k) = 0.05$$
 or alternatively, $Pr(T < k) = 0.95$.
Using the inverse normal function on CAS, i.e. invNorm(0.95, 0, 5).
 $k = 8.22426...$ So $k = 8.224$ (correct to 3 decimal places) (1 mark)

c. i. The manager models a binomial distribution with parameters n = 6, p = 0.5.

Pr(P=2) = 0.234375(binom Pdf(6,0.5,2) = 0.234375)Pr(P=3) = 0.3125(binom Pdf(6,0.5,3) = 0.3125)Pr(P=5) = 0.09375(binom Pdf(6,0.5,5) = 0.09375)

(1 mark) for one correct point (1 mark) for all points correct

ii. *P* is a binomially distributed variable with parameters n = 6, p = 0.5. Pr $(P \ge 1) = 0.984375$

iii.
$$Pr(P \le 4 | P \ge 1)$$
 (conditional probability) (1 mark)

$$= \frac{Pr(1 \le P \le 4)}{Pr(P \ge 1)}$$

$$= \frac{0.875}{0.984375}$$

$$= 0.8889 \text{ (correct to 4 decimal places)} (1 mark)$$

i.
$$0.8 + m + n = 1$$

 $n = \frac{1}{5} - m$ (1 mark)
 $E(X) = 0 \times 0.8 + 1 \times m + 2 \times \left(\frac{1}{5} - m\right) = \frac{2}{5} - m$
 $E(X^2) = 0^2 \times 0.8 + 1^2 \times m + 2^2 \times \left(\frac{1}{5} - m\right) = \frac{4}{5} - 3m$ (1 mark)
 $Var(X) = E(X^2) - [E(X)]^2$ (formula sheet)
 $= \frac{4}{5} - 3m - \left(\frac{2}{5} - m\right)^2$
 $= -m^2 - \frac{11}{5}m + \frac{16}{25}$ (1 mark)

ii.The graph of the function defining the variance is part
of an inverted parabola.
From the table,
$$m \ge 0$$
 and $n \ge 0$ therefore $0 \le m \le 0.2$
This is the domain of the variance function.
The maximum variance therefore occurs when $m = 0$.
The maximum variance is therefore $\frac{16}{25}$ or 0.64. y
(0,0.64)
(0.2,0.16)
m(1 mark)

e. i.
$$\hat{p} = \frac{0.1752 + 0.2248}{2} = 0.2$$
 (1 mark)
 $0.2248 - 0.2 = 0.0248$ (which is the margin of error)
95% confidence interval for p is $(\hat{p} \pm 1.96\hat{\sigma})$ (where $\hat{\sigma} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$)
 $1.96\hat{\sigma} = 0.0248$ so $\hat{\sigma} = 0.0127$ (to 4 decimal places) (1 mark)

ii. margin of error =
$$1.96\sqrt{\frac{0.2 \times 0.8}{n}}$$

We require
$$1.96\sqrt{\frac{0.2 \times 0.8}{n}} \le 0.75 \times 0.0248$$
 (1 mark)

n = 1777 (to the nearest integer) (1 mark)

d.

Question 4 (13 marks)

a. For g to exist, 3 - x > 0, x < 3 so $D = (-\infty, 3)$. (1 mark)

b. Do a quick sketch.

area required =
$$\int_{0}^{2} (f(x) - g(x)) dx$$
 (1 mark)
= $\log_{e} \left(\frac{3125}{729} \right)$ (1 mark)

Note, because you haven't been asked to

express your answer correct to a certain

number of decimal places, you must leave your answer as an exact value.

c. i.
$$h(x) = f(x) + g(x)$$

 $= \log_{e}(x+3) + \log_{e}(3-x)$
 $= \log_{e}(x+3)(3-x)$ (log laws)
 $= \log_{e}(9-x^{2})$ as required (1 mark)

ii.
$$d_f = [0, \infty)$$
 and $d_g = (-\infty, 3)$
The intersection of these two intervals is $[0, 3)$ so $d_h = [0, 3)$. (1 mark)
The maximum value of $h(x)$ over this domain occurs when $x = 0$.
Now $h(0) = \log_e(9)$ and as $x \to 3$ (from below), $h(x) \to -\infty$
So $r_h = (-\infty, \log_e(9)]$ (1 mark)

iii.
$$h(x) = \log_{e}(9 - x^{2})$$

Let $y = \log_{e}(9 - x^{2})$
Swap x and y for inverse.
 $x = \log_{e}(9 - y^{2})$

Now make *y* the subject.

Method 1 – by hand

$$e^{x} = 9 - y^{2}$$

$$y^{2} = 9 - e^{x}$$

$$y = \pm \sqrt{9 - e^{x}} \text{ but } r_{h^{-1}} = d_{h} = [0, 3]$$
So $y = \sqrt{9 - e^{x}}$

$$h^{-1}(x) = \sqrt{9 - e^{x}}$$
(1 mark)

Method 2 - using CAS
Solve
$$x = \log_e(9 - y^2)$$
 for y.
 $y = \pm \sqrt{9 - e^x}$ but $r_{h^{-1}} = d_h = [0, 3)$
So $y = \sqrt{9 - e^x}$
 $h^{-1}(x) = \sqrt{9 - e^x}$ (1 mark)

d. By inspection, it is seen that the graphs of y = h(x) and $y = h^{-1}(x)$ intersect on the line y = x, so the point of intersection is (p, p).

The average value of the function h(x) over the interval [0, p] is $\frac{1}{p-0} \int_0^p h(x) dx$.

(1 mark)

The graphs of y = h(x) and $y = h^{-1}(x)$ are reflections of each other in the line y = x. Therefore, the shaded areas shown below are equal in area.

So
$$\int_{0}^{p} h(x)dx = p^{2} + \int_{p}^{\log_{e}(9)} h^{-1}(x)dx$$

So required average value expression $= \frac{1}{p} \left(p^{2} + \int_{p}^{\log_{e}(9)} h^{-1}(x)dx \right)$ (1 mark)

e.

Solve $j_a(x) = 0$ for x using CAS.

$$x = \pm \sqrt{a^2 - 1}$$

We require $x < 0$ so $x = -\sqrt{a^2 - 1}$.
So Q is the point $\left(-\sqrt{a^2 - 1}, 0\right)$. (1 mark)
 $j'_a(x) = \frac{2x}{x^2 - a^2}$
 $j'_a(-\sqrt{a^2 - 1}) = \frac{-2\sqrt{a^2 - 1}}{-1}$
 $= 2\sqrt{a^2 - 1}$ (1 mark)

f. Let θ be the angle that the tangent to $j_a(x)$ at Q makes with the positive branch of the *x*-axis.

Using our answer to part e.,
$$2\sqrt{a^2-1} = \tan(\theta)$$

We require $2\sqrt{a^2-1} < \tan(45^\circ)$ (1 mark)
 $2\sqrt{a^2-1} < 1$
Using CAS $-\frac{\sqrt{5}}{2} < a \le -1$ or $1 \le a < \frac{\sqrt{5}}{2}$ but $a > 1$ (given in question)
so $1 < a < \frac{\sqrt{5}}{2}$ (1 mark)

Question 5 (10 marks)

a. The period of
$$y = \sin(x)$$
 is 2π .
The period of $y = \cos\left(\frac{x}{3}\right)$ is $\frac{2\pi}{1/3} = 6\pi$.
It is required that the graphs of the two functions above simultaneously repeat. Therefore, the least common multiple of 2 and 6 is required, and the least common multiple is 6.
Therefore, the graphs of the two functions simultaneously repeat after 6π .
The period of *f* is therefore 6π . (1 mark)
b. Graph *f* on your CAS.
Make sure that the coordinates of the points on the graph are expressed to at least 4
decimal places on your CAS.
One of the maximum occurs at (1.4184..., 1.8787...).
So the maximum value of *f* is 1.879, correct to 3 decimal places. (1 mark)
c. To obtain the graph of $y = -f(x+c)$, the graph of *f* is translated *c* units to the left
(since *c* is positive) and then reflected in the *x*-axis.
The smallest positive value of *c* for which the graph of $y = -f(x+c)$ will coincide
with the graph of *f* is 3π .
For example, the point $(3\pi, -1)$ on the graph of *f* becomes the point (0, 1) on the
graph of $y = -f(x+c)$. So $c = 3\pi$. (1 mark)

d. Solve
$$\int_{0}^{q} f(x) dx = 0$$
 for q where $q > 0$ (1 mark)

q = 10.7289..., 18.8495..., and so on

The smallest possible value of q is 10.73 (correct to two decimals places). (1 mark)

e. The period of
$$y = \sin(ax)$$
 is $\frac{2\pi}{a}$.
The period of $y = \cos\left(\frac{x}{3a}\right)$ is $\frac{2\pi}{1/3a} = 6a\pi$.

The least common multiple is $6a\pi$.

So the period of the functions f_a is $6a\pi$.

(1 mark)

f. i. The maximum value of
$$y = \sin(ax)$$

occurs at $x = \frac{\pi}{2a} + \frac{2\pi k}{a}$, $k \in \mathbb{Z}$
 $= \frac{\pi + 4\pi k}{2a}$
 $= \frac{\pi(1 + 4k)}{2a}$
ii. The maximum value of $y = \cos\left(\frac{x}{3a}\right)$
occurs at $x = 0 + 6an\pi$, $n \in \mathbb{Z}$
 $= 6an\pi$
 $y = \sin(ax)$
 $y = \cos(ax)$
 $y = \cos(\frac{x}{3a})$
 $y = \cos(\frac{x}{3a})$

(1 mark)

g. For $f_a(x) = 2$, we would require that the maximum value of sin(ax), which is 1, occurred at the same x value as where the maximum value of $cos\left(\frac{x}{3a}\right)$, which is also 1, occurred at. Therefore, we would require that $\frac{\pi(1+4k)}{2a} = 6an\pi$, $k,n \in Z$ (1 mark) which leads to $a^2 = \frac{4k+1}{12n}$ Now 4k + 1 is odd and 12n is even therefore $\frac{4k+1}{12n}$ is never an integer for $k, n \in Z$, therefore $\frac{4k+1}{12n}$ is never a perfect square, therefore a is never a positive integer.

Therefore, the maximum value of $f_a(x)$ cannot be 2. (1 mark)

18