2024 Kilbaha VCE Mathematical Methods Trial Examination 1 Page 3 Detailed answers

Question 1

Question 1
\n**a.**
$$
f(x) = \log_e \left(\sqrt{(x^3 + 1)} \right) = \log_e \left((x^3 + 1)^{\frac{1}{2}} \right) = \frac{1}{2} \log_e (x^3 + 1)
$$

\n $f'(x) = \frac{1}{2} \frac{\frac{d}{dx} (x^3 + 1)}{(x^3 + 1)} = \frac{3x^2}{2(x^3 + 1)}$
\n $f'(2) = \frac{3 \times 4}{2(8 + 1)}$

$$
f'(2) = \frac{2}{3}
$$

$$
\mathbf{b}.
$$

 $\frac{1}{4x+9}$ = $\frac{1}{(4x+9)^n}$ $d\begin{pmatrix} x \\ x \end{pmatrix}$ px+r $dx\left(\sqrt{4x+9}\right)$ (4x) $\begin{pmatrix} x \\ y \end{pmatrix}$ px + $\left(\frac{x}{\sqrt{4x+9}}\right) = \frac{px+r}{\left(4x+9\right)^n}$ using the quotient rule $\overline{1}$

$$
u = x, \quad v = \sqrt{4x+9} = (4x+9)^{\frac{1}{2}}
$$

\n
$$
\frac{du}{dx} = 1 \quad \frac{dv}{dx} = 4 \times \frac{1}{2} \times (4x+9)^{-\frac{1}{2}} = \frac{2}{\sqrt{4x+9}}
$$

\n
$$
\frac{d}{dx} \left(\frac{x}{\sqrt{4x+9}}\right) = \frac{\sqrt{4x+9} - \frac{2x}{\sqrt{4x+9}}}{4x+9}
$$

\n
$$
= \frac{4x+9-2x}{\sqrt{4x+9}(4x+9)} = \frac{2x+9}{(4x+9)^{\frac{3}{2}}}, \quad p = 2, \quad q = 9, \quad n = \frac{3}{2}
$$

Question 2

a.
$$
3^{x^2+6x} = \frac{1}{243} = 3^{-5}
$$

$$
x^2 + 6x = -5
$$

$$
x^2 + 6x + 5 = 0
$$

$$
(x+5)(x+1) = 0
$$

$$
x = -5, -1
$$

b. $\log_2(x^2+4\sqrt{2}) + \log_2(x^2-4\sqrt{2}) = 5$ $\log_2\left(\left(x^2+4\sqrt{2}\right)\left(x^2-4\sqrt{2}\right)\right)=5$ $^{2}+4\sqrt{2})(x^{2}-4\sqrt{2})-2^{5}$ 4 $4\sqrt{2}$ $(x^2 - 4\sqrt{2}) = 2$ $32 = 32$ $(x^2 + 4\sqrt{2})(x)$ *x* $+4\sqrt{2}$ $(x^2-4\sqrt{2}) = 2^5$ $-32 = 32$

$$
(x2 + 4\sqrt{2})(x2 - 4\sqrt{2}) = 25
$$

\n
$$
x4 - 32 = 32
$$

\n
$$
x4 = 64, \quad x2 = 8
$$

\n
$$
x = \pm 2\sqrt{2}
$$

Question 3
\n(1)
$$
2ax - 2by = 5
$$
 \Rightarrow $2by = 2ax - 5$
\n(2) $(1-3b)x+12y = 2-4b$ \Rightarrow $12y = (3b-1)x+2-4b$
\n(1) $y = \frac{ax}{b} - \frac{5}{2b}$ (2) $y = \frac{(3b-1)x}{12} + \frac{1-2b}{6}$

for an infinite number of solutions the gradients and the y-intercepts are both equal, so
\n(3)
$$
\frac{a}{b} = \frac{3b-1}{12}
$$
 (4) $-\frac{5}{2b} = \frac{1-2b}{6}$ M1
\n(3) $a = \frac{b(3b-1)}{12}$ (4) $-30 = 2b(1-2b) = 2b-4b^2$
\n $4b^2 - 2b - 30 = 0$
\n $2b^2 - b - 15 = 0$ M1
\n $(2b+5)(b-3) = 0$
\n $b = 3$ $a = \frac{3(9-1)}{12} = 2$, or $b = -\frac{5}{2}$ $a = \frac{-\frac{5}{2}(-\frac{15}{2}-1)}{12} = -\frac{5}{2} \times \frac{-17}{2} \times \frac{1}{12} = \frac{85}{48}$

an infinite number of solutions when $a = 2$, $b = 3$ or $a = \frac{85}{10}$, $b = -\frac{5}{3}$ 48['] 2 $a = \frac{05}{10}, b = -\frac{1}{2}$ A1

Question 4

Question 4
\n
$$
n = 6, \quad \hat{P} = \frac{X}{n} = \frac{X}{6} \qquad X \stackrel{d}{=} Bi(n = 6, p = ?)
$$
\n
$$
Pr\left(\hat{P} = \frac{1}{3}\right) = Pr(X = 2) = Pr\left(\hat{P} = \frac{1}{2}\right) = Pr(X = 3)
$$
\n
$$
Pr(X = 2) = \binom{6}{2}p^2(1-p)^4 = Pr(X = 3) = \binom{6}{3}p^3(1-p)^3
$$
\n
$$
\frac{6 \times 5}{2}p^2(1-p)^4 - \frac{6 \times 5 \times 4}{2}p^3(1-p)^3 = 0
$$

$$
(2)^{2} (1-p)^{3} - \frac{6 \times 5 \times 4}{3 \times 2} p^{3} (1-p)^{3} = 0
$$

\n
$$
5p^{2} (1-p)^{3} [3(1-p)-4p] = 5p^{2} (1-p)^{3} (3-7p) = 0
$$

since $0 < p < 1$, $p = \frac{3}{7}$, $X = Bi\left(n = 6, p = \frac{3}{7}\right)$ $\frac{3}{7}$, $X \stackrel{d}{=} Bi\bigg(n=6, p=\frac{3}{7}\bigg)$ $p < 1, \quad p = \frac{3}{7}, \quad X = Bi\left(n = 6, p = \frac{3}{7}\right)$

since
$$
0 < p < 1
$$
, $p = \frac{1}{7}$, $X = Bi\left(n = 6, p = \frac{1}{7}\right)$
\n
$$
Pr(\hat{P} = 1) = Pr(X = 6) = \binom{6}{6} \left(\frac{3}{7}\right)^6 \left(\frac{4}{7}\right)^0 = \left(\frac{3}{7}\right)^6, \quad a = 3, \quad b = 7, \quad n = 6
$$
\n
$$
A1
$$

$$
f(x) = \begin{cases} \sqrt{5 - x^2}, & x \le 2 \\ ax^2 + bx, & x > 2 \end{cases}
$$
, let $g(x) = ax^2 + bx$

Since the function is continuous at $x = 2$,

$$
f(2)=1=g(2) \Rightarrow (1) \quad 4a+2b=1
$$

Since the join is smooth, the gradients are also equal.

$$
f'(x) = \frac{d}{dx}(\sqrt{5 - x^2}) = \frac{-x}{\sqrt{5 - x^2}}
$$

g'(x) = 2ax + b
 $f'(2) = -2 = g'(2) \implies (2) 4a + b = -2$

$$
(1)-(2) \quad b=3, \quad 4a=-5, \quad a=-\frac{5}{4}
$$

Question 6

$$
y = f'(x) = 5\sin\left(\frac{x}{2}\right) + me^{-2x} + 4
$$

at the origin the gradient is zero, $f'(0) = 0$

$$
0 = 5\sin(0) + me^{0} + 4 = m + 4 = 0,
$$

\n
$$
m = -4
$$

$$
y = f(x) = \int \left(5\sin\left(\frac{x}{2}\right) - 4e^{-2x} + 4 \right) dx
$$

\n
$$
y = f(x) = -10\cos\left(\frac{x}{2}\right) + 2e^{-2x} + 4x + c
$$

$$
(2)
$$

f (0) = 0, 0 = -10cos(0) + 2e⁰ + c = -8 + c,
c = 8

$$
y = f (x) = -10cos(\frac{x}{2}) + 2e^{-2x} + 4x + 8
$$

a.
$$
2\sin^2(2x) + \cos(2x) - 1 = 0
$$

 $2(1-\cos^2(2x)) + \cos(2x) - 1$

$$
2(1-\cos^{2}(2x)) + \cos(2x) - 1 = 0
$$

\n
$$
2-2\cos^{2}(2x) + \cos(2x) - 1 = 0
$$

\n
$$
-2\cos^{2}(2x) + \cos(2x) + 1 = 0
$$

\n
$$
2\cos^{2}(2x) - \cos(2x) + 1 = 0
$$

\n
$$
(2\cos(2x) + 1)(\cos(2x) - 1) = 0
$$

\n
$$
\cos(2x) = -\frac{1}{2}, \quad \cos(2x) = 1
$$

\n
$$
2x = 2n\pi \pm \cos^{-1}(-\frac{1}{2}), 2x = 2n\pi \pm \cos^{-1}(1)
$$

\n
$$
2x = 2n\pi \pm \frac{2\pi}{3}, \quad 2x = 2n\pi \pm 0
$$

\n
$$
x = \frac{\pi}{3}(3n \pm 1), x = n\pi, n \in \mathbb{Z}.
$$

b. The two graphs intersect at $x = 0, \frac{\pi}{2}, \frac{2\pi}{2}, \pi, \frac{4\pi}{2}, \frac{5\pi}{2}, 2$ $x = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}, 2\pi$ from **a.**

a. completing the square

a. completing the square
\n
$$
h(x)=6+3x-x^2=-\left(x^2-3x+\frac{9}{4}\right)+6+\frac{9}{4}=\frac{33}{4}-\left(x-\frac{3}{2}\right)^2
$$
\nrange
$$
h=\left(-\infty,\frac{33}{4}\right]
$$
\n
$$
f(x)=\log_e(x-2) \text{ domain } x-2>0 \implies x>2, \text{ range } R
$$

Since range $h \not\subset \text{ domain } f$, so $f \circ h(x)$ does not exist. A1

b. solving
$$
g(x)=6+3x-x^2=2
$$

\n $\Rightarrow x^2-3x-4=0$
\n $(x-4)(x+1)=0$
\n $\Rightarrow x=-1, 4$

now $g(-1) = g(4) = 2$, $g\left(\frac{3}{2}\right) = \frac{33}{4}$ $\left(\frac{3}{2}\right) = \frac{3}{4}$ $g(-1) = g(4) = 2$, $g\left(\frac{3}{2}\right) = \frac{33}{4}$, so if we now restrict the domain of *g*,

as
$$
D = (-1, 4) = \text{domain } f \circ g(x)
$$
 and the range of $g = \left(2, \frac{33}{4}\right)$

$$
\begin{pmatrix}\n8 \\
6 \\
2 \\
4 \\
8\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n3 & 33 \\
4 & \\
8 & \\
8 & \\
8 & \\
8 & \\
8 & \\
4 & 2\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n3 & 33 \\
4 & \\
8 & \\
8 & \\
8 & \\
8 & \\
8 & \\
8 & 4 & 5 & 6\n\end{pmatrix}
$$

so range
$$
g \\\subseteq
$$
 domain f , so now $f \circ g(x)$ exist.
\n $f \circ g(x) = f(g(x)) = f(6+3x-x^2) = \log_e(6+3x-x^2-2)$
\n $f \circ g(x) : (-1,4) \to R$, $f \circ g(x) = \log_e(4+3x-x^2) = \log_e((4-x)(x+1))$ A1

The two *y* values are equal at $x = b$ so that (1) $\sin(b) = \sin(b - \alpha) + c$

$$
y = \sin(x), \frac{dy}{dx} = \cos(x) \text{ and } y = \sin(x - \alpha) + c, \frac{dy}{dx} = \cos(x - \alpha)
$$

The gradients are also equal at $x = b$ so that (2) $\cos(b) = \cos(b - \alpha)$ A1
square (1) $\sin^2(b) = \sin^2(b - \alpha) + 2c \sin(b - \alpha) + c^2$
square (2) $\cos^2(b) = \cos^2(b - \alpha)$ now add M1
 $\sin^2(b) + \cos^2(b) = \sin^2(b - \alpha) + \cos^2(b - \alpha) + 2c \sin(b - \alpha) + c^2$
 $1 = 1 + 2c \sin(b - \alpha) + c^2$
 $2c \sin(b - \alpha) + c^2 = c(2 \sin(b - \alpha) + c) = 0$
 $c = -2 \sin(b - \alpha) = 2 \sin(\alpha - b) \text{ since } c > 0 \text{ and } 0 < b < \alpha < \frac{\pi}{2}$ M1
from (1) $\sin(b) = \sin(b - \alpha) + c = \sin(b - \alpha) - 2\sin(b - \alpha)$

$$
2b = \alpha
$$

\n
$$
b = \frac{\alpha}{2}
$$

\n
$$
c = 2\sin\left(\alpha - \frac{\alpha}{2}\right)
$$

\n
$$
c = 2\sin\left(\frac{\alpha}{2}\right)
$$

 $\sin (b) = -\sin (b - \alpha) = \sin (\alpha - b)$

 $b = \alpha - b$

ii.

a.i.
$$
f(x) = \begin{cases} \frac{a}{(2x+1)^2} & 1 \le x \le 4 \\ 0 & \text{elsewhere} \end{cases}
$$

since it is a probability density function the total area under the curve is 1.

$$
\int_{1}^{4} \frac{a}{(2x+1)^{2}} dx = 1
$$

\n
$$
a \left[-\frac{1}{2(2x+1)} \right]_{1}^{4} = 1
$$

\n
$$
a \left(-\frac{1}{18} + \frac{1}{6} \right) = \frac{a(3-1)}{18} = 1
$$

\n
$$
a = 9
$$

\n
$$
f(x) = \begin{cases} \frac{9}{(2x+1)^{2}} & 1 \le x \le 4 \\ 0 & \text{elsewhere} \end{cases}
$$

\n
$$
f(1) = 1, \quad f(4) = \frac{1}{9} \text{ the graph is part of a truncus graph}
$$

b.
$$
g(y) = \begin{cases} \frac{b}{2y+1} & 1 \le y \le 4 \\ 0 & \text{elsewhere} \end{cases}
$$

since it is a probability density function the total area under the curve is 1.

$$
\int_{1}^{4} \frac{b}{2y+1} dy = 1
$$
\n
$$
b \left[\frac{1}{2} \log_e (2y+1) \right]_{1}^{4} = 1
$$
\n
$$
\frac{b}{2} (\log_e (9) - \log_e (3)) = \frac{b}{2} \log_e (3) = 1
$$
\n
$$
b = \frac{2}{\log_e (3)}
$$
\n
$$
E(Y) = \frac{2}{\log_e (3)} \int_{1}^{4} \frac{y}{2y+1} dy
$$
\n
$$
E(Y) = \frac{1}{\log_e (3)} \int_{1}^{4} \left(\frac{2y}{2y+1} \right) dy = \frac{1}{\log_e (3)} \int_{1}^{4} \left(\frac{2y+1-1}{2y+1} \right) dy
$$
\n
$$
E(Y) = \frac{1}{\log_e (3)} \int_{1}^{4} \left(1 - \frac{1}{2y+1} \right) dy
$$
\n
$$
= \frac{1}{\log_e (3)} \left[y - \frac{1}{2} \log_e (2y+1) \right]_{1}^{4}
$$
\n
$$
= \frac{1}{\log_e (3)} \left(4 - \frac{1}{2} \log_e (9) - 1 + \frac{1}{2} \log_e (3) \right) = \frac{1}{\log_e (3)} \left(3 - \frac{1}{2} \log_e (3) \right)
$$
\n
$$
= \frac{3}{\log_e (3)} - \frac{1}{2}, \quad p = 3, \quad q = -\frac{1}{2}
$$
\nA1

End of detailed answers for the 2024 Kilbaha VCE Mathematical Methods Trial Examination 1

