2024 VCE Mathematical Methods Year 12 Trial Examination 2 Detailed Answers

Quality educational content

Kilbaha Education (Est. 1978) (ABN 47 065 111 373) PO Box 3229 Cotham Vic 3101 Australia

PayID: 47065111373 Email: <u>kilbaha@gmail.com</u> Tel: (03) 9018 5376 Web: https://kilbaha.com.au

All publications from Kilbaha Education are digital and are supplied to the purchasing school in both WORD and PDF formats with a school site licence to reproduce for students in both print and electronic formats.

SECTION A

ANSWERS

1	Α	В	C	D
2	Α	В	С	D
3	Α	В	С	D
4	Α	В	С	D
5	Α	В	С	D
6	Α	В	С	D
7	Α	В	С	D
8	Α	В	С	D
9	Α	В	С	D
10	Α	В	С	D
11	Α	В	С	D
12	Α	В	С	D
13	Α	В	С	D
14	Α	В	С	D
15	Α	В	С	D
16	Α	В	С	D
17	Α	В	С	D
18	Α	В	С	D
19	Α	В	С	D
20	Α	В	С	D

SECTION A

Question 1

Answer A

Both functions have periods $T = \frac{2\pi}{\pi} = 2c$, both functions have an amplitude of *b*, с

both functions have a range of [a-b, a+b]

Question 2	Answer C	Define $f(x) = \ln(b - x)$	Done
$f(x) = \log_e(b-x)$ domain	b - x > 0, x < b	Define $g(x) = \sqrt{x+b}$	Done
$g(x) = \sqrt{x+b}$ domain $x+b$		domain $\left(\frac{f(x)}{g(x)}, x\right)$	- <i>b</i> < <i>x</i> < <i>b</i>
domain of $\frac{f}{g} = -b < x < b =$	$(-b,b)$ since $g(x) \neq 0$	$\operatorname{domain}_{g(x)}(x)$	

Question 3

Define
$$f(x) = x^3$$
 Done

$$\int_{0}^{4a} f(x) dx$$

$$= \int_{0}^{2a} f(x) dx + \int_{2a}^{4a} f(x) dx$$

$$= \int_{0}^{2a} f(x) dx - \int_{4a}^{2a} f(x) dx$$

$$= \int_{0}^{2a} f(x) dx - \int_{4a}^{2a} f(u) du \quad \text{let } u = 4a - x$$

$$= \int_{0}^{2a} f(x) dx + \int_{0}^{2a} f(4a - x) dx = \int_{0}^{2a} (f(x) + f(4a - x)) dx$$

$$= \int_{0}^{2a} f(x) dx + \int_{0}^{2a} f(4a - x) dx = \int_{0}^{2a} (f(x) + f(4a - x)) dx$$

reflect in the y-axis

and translate 4a units to the right

Question 4

Answer B

x	1	2	3	4
$f(x) = \frac{1}{x}$	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$

$$a = 1, \quad b = 4, \quad n = 3. \quad h = \frac{b-a}{n} = 1$$
$$A_T = \frac{h}{2} \left(f(1) + 2 \left(f(2) + f(3) \right) + f(4) \right) = \frac{1}{2} \left(1 + 2 \left(\frac{1}{2} + \frac{1}{3} \right) + \frac{1}{4} \right) = \frac{35}{24}$$

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) http://copyright.com.au

https://kilbaha.com.au

Page 4

Answer C

Consider the function $f: R \to R$, f(x) = x + 2.

f: y = x + 2 $f^{-1}: x = y + 2$ $f^{-1}(x) = x - 2$ $f(x) = f^{-1}(x) \implies x + 2 = x - 2$

This equation is inconsistent, there is no solution, with y = x as all three lines are parallel. Colin is correct.

Consider the function
$$f: R \to R$$
, $f(x) = -x^3$.
 $f: \quad y = -x^3$
 $f^{-1}: \quad x = -y^3$, $y = -x^{\frac{1}{3}} = -\sqrt[3]{x}$
both the function f and its inverse have domain and range

both the function *f* and its inverse have domain and range *R*. solving $f(x) = f^{-1}(x) \implies (1) - x^3 = -\sqrt[3]{x}$

(1)
$$x' = x \implies x = 0, \pm 1$$

There are three points of intersection between the function and its inverse, with coordinates (-1,1), (1,-1) and the origin (0,0). Only the point at the origin only lies on the line y = x. Ben is correct.

Other functions are possible to show that both Ben and Colin are correct.

Question 6

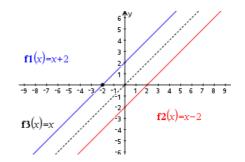
Answer B

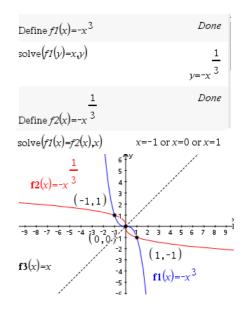
BR or RB, 2 ways of drawing one red and one blue, without replacement

Box A:
$$\frac{1}{2} \left[\frac{(r-1)(b+1)}{(b+r)(b+r-1)} + \frac{(b+1)(r-1)}{(b+r)(b+r-1)} \right] = \frac{(r-1)(b+1)}{(b+r)(b+r-1)}$$
Box B:
$$\frac{1}{2} \left[\frac{(r+1)(b-1)}{(b+r)(b+r-1)} + \frac{(b-1)(r+1)}{(b+r)(b+r-1)} \right] = \frac{(r+1)(b-1)}{(b+r)(b+r-1)}$$
Box A or B
$$\frac{(r-1)(b+1)}{(b+r)(b+r-1)} + \frac{(r+1)(b-1)}{(b+r)(b+r-1)} = \frac{2(br-1)}{(b+r)(b+r-1)}$$

$$\frac{(r-1)\cdot(b+1)+(r+1)\cdot(b-1)}{(r+b)\cdot(r+b-1)} \qquad \frac{2\cdot(b\cdot r-1)}{(r+b)\cdot(r+b-1)}$$

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) <u>http://copyright.com.au</u>





Question 7Answer DWhen
$$n = 2$$
, $y = \sqrt{x-a}$, $\frac{dy}{dx} = \frac{1}{2\sqrt{x-a}}$ $Done$ When $n = 2$, $y = \sqrt{x-a}$, $\frac{dy}{dx} = \frac{1}{2\sqrt{x-a}}$ $Lefine f(x) = (x-a)^n |_{n=-3}$ When $n = -3$, $\frac{1}{2\sqrt{x-a}} = (x-a)^{-\frac{1}{3}}$, $\frac{dy}{dx} = -\frac{1}{3}(x-a)^{-\frac{4}{3}}$ $\frac{d}{dx}(f(x))|_{x=a}$ When $n = -\frac{1}{2}$, $y = \frac{1}{(x-a)^2}$, $\frac{dy}{dx} = -\frac{2}{(x-a)^3}$ $Done$ All of A. B and C. are not differentiable at $x = a$. $\frac{d}{dx}(f(x))|_{x=a}$ When $n = \frac{1}{2}$, $y = (x-a)^2$ is differentiable at $x = a$ $\frac{d}{dx}(f(x))|_{x=a}$ Define $f(x) = (x-a)^n |_{n=2}$ $Done$ $Define f(x) = (x-a)^n |_{n=2}$ $Done$ $\frac{1}{dx}(f(x))|_{x=a}$ $Done$ $\frac{1}{dx}(f(x))|_{x=a}$ $Done$

Answer A

$$y = 4 \tan\left(2\left(x - \frac{\pi}{3}\right)\right) = \frac{4 \sin\left(2\left(x - \frac{\pi}{3}\right)\right)}{\cos\left(2\left(x - \frac{\pi}{3}\right)\right)}$$

crosses the x-axis when $y = 0$ so $\sin\left(2\left(x - \frac{\pi}{3}\right)\right) = 0$
has vertical asymptotes when $\cos\left(2\left(x - \frac{\pi}{3}\right)\right) = 0$
 $\operatorname{solve}\left(\sin\left(2\cdot\left(x - \frac{\pi}{3}\right)\right) = 0, x\right) \qquad x = \frac{(3 \cdot nI - 1) \cdot \pi}{6} \qquad x = \frac{(3 \cdot (k + 1) - 1) \cdot \pi}{6} \qquad x = \frac{(3 \cdot k + 2) \cdot \pi}{6}$
 $\operatorname{solve}\left(\cos\left(2\cdot\left(x - \frac{\pi}{3}\right)\right) = 0, x\right) \qquad x = \frac{(6 \cdot n2 - 5) \cdot \pi}{12} \qquad x = \frac{(6 \cdot (k - 1) - 5) \cdot \pi}{12} \qquad x = \frac{(6 \cdot k - 11) \cdot \pi}{12}$

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) http://copyright.com.au

Question 9 Answer C

$$Pr(X \ge 2) = 1 - \left[Pr(X = 1) + Pr(X = 0)\right] = 1 - \left[\binom{10}{1} 0.37 \times 0.63^9 + 0.63^{10}\right]$$

n = 10, q = 0.63, p = 0.37, at least two successes in ten trials each with a probability of 0.37

Question 10Answer A
$$\left(\hat{p} - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$$
 $z95:=invNorm(0.975,0,1)$ 1.9600 $z99:=invNorm(0.995,0,1)$ 2.5758

CI: 99%,
$$z = 2.5758$$
 $\left(\hat{p} - 2.5758\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + 2.5758\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right) = (a,b)$

$$(1) \ a = \hat{p} - 2.5758 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \qquad (2) \ b = \hat{p} + 2.5758 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\ \frac{1}{2}((1)+(2)) \quad \hat{p} = \frac{a+b}{2}, \qquad \frac{1}{2}((2)-(1)) \quad \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \frac{b-a}{2\times 2.5758} \\ CI: \ 95\%, \ z = 1.96 \\ \left(\hat{p} - 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p} + 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right) \\ \left(\frac{a+b}{2} - \frac{1.96(b-a)}{2\times 2.5758}, \ \frac{a+b}{2} + \frac{1.96(b-a)}{2\times 2.5758}\right)$$

$$\left(\frac{a}{2}\left(1+\frac{1.96}{2.5758}\right)+\frac{b}{2}\left(1-\frac{1.96}{2.5758}\right),\ \frac{a}{2}\left(1-\frac{1.96}{2.5758}\right)+\frac{b}{2}\left(1+\frac{1.96}{2.5758}\right)\right)$$

(0.88a + 0.12b, 0.12a + 0.88b)

zInterval_1Prop 20,100,0.99: stat.results	"Title"	"1–Prop z Interval"
	"CLower"	0.097
	"CUpper"	0.303
	"ê"	0.200
	"ME"	0.103
	"n"	100.000
0.88 stat. CLower+0.12 stat. CUpper		0.122
0.12 · stat. CLower+0.88 · stat. CUpper		0.278
zInterval_1Prop 20,100,0.95: stat.results	"Title"	"1–Prop z Interval"
	"CLower"	0.122
	"CUpper"	0.278
	"ĝ"	0.200
	"ĝ" "ME"	0.200 0.078

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) http://copyright.com.au

Answer D

$$f(x) = g(x)e^{g(x)} \text{ using the product rule}$$

$$f'(x) = \frac{d}{dx}(g(x)) \times e^{g(x)} + g(x)\frac{d}{dx}(e^{g(x)})$$

$$f'(x) = g'(x)e^{g(x)} + g(x)g'(x)e^{g(x)}$$

$$f'(x) = g'(x)e^{g(x)}(1+g(x))$$

$$f'(2) = g'(2)e^{g(2)}(1+g(2)) = 3e^{4}(1+4)$$

$$f'(2) = 15e^{4}$$

Question 12

Answer B

$$f(x) = \int g(x) dx \implies g(x) = \frac{d}{dx} (f(x)) = f'(x)$$
$$h(x) = \frac{d}{dx} (g(x)) = \frac{d}{dx} (f'(x))$$

Question 13

Answer B

$$n = 18, \quad \hat{P} = \frac{X}{18} \qquad X \stackrel{d}{=} Bi(n = 18, p = ?)$$
$$\Pr\left(\hat{P} = \frac{1}{3}\right) = \Pr\left(X = 6\right) = \binom{18}{6} p^6 (1-p)^{12} = 0.1873$$
solving gives $p = 0.3$,

$$\Pr\left(\hat{P} < \frac{1}{2}\right) = \Pr\left(X < 9\right)$$
$$= \Pr\left(X \le 8\right) = 0.940$$

solve
$$(nCr(18,6) \cdot p^{6} \cdot (1-p)^{12} = 0.1873 p) | 0
 $p = 0.3000$
binomCdf(18,0.3,0,8) 0.9404$$

Question 14 Answer B

If f(x) is a non-zero odd function, then f(-x) = -f(x)

Let $f(x) = x^3$, $f(-x) = (-x)^3 = -x^3 = -f(x)$ $f_o f(x) = f(f(x)) = f(x^3) = x^9$ which is an odd function **B.** is true. All of **A. C.** and **D.** are false.

Define
$$f(x)=x^3$$

 $f(-x)=-f(x)$
 $f(-x)=-f(x)$
 $f(-x)=-f(x)$
Define $a(x)=f(x^2)\cdot\cos(x)$
 $a(-x)=-a(x)$
Define $c(x)=f(x^3)\cdot\sin(x)$
Define $c(x)=f(x^3)\cdot\sin(x)$
Define $a(x)=f(x^2)-f(x)$
Define $a(x)=f(x^2)-f(x)$
 $d(-x)=-d(x)$
 $x^6+x^3=x^3-x^6$

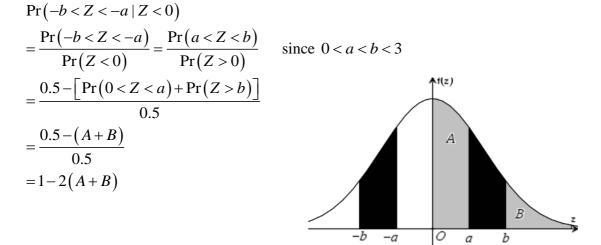
Question 15 Answer D

 $\sum \Pr(X = x) = 1 \text{ for all } p, \text{ however since they are probabilities } 0 < 1 - \frac{5p}{6} < 1 \implies 0 < p < \frac{6}{5}$ $E(X) = \sum x \Pr(X = x) = 1 \times \frac{p}{2} + 2 \times \frac{p}{3} + 3\left(1 - \frac{5p}{6}\right) = \frac{1}{3}(9 - 4p)$ $E(X^2) = \sum x^2 \Pr(X = x) = 1 \times \frac{p}{2} + 4 \times \frac{p}{3} + 9\left(1 - \frac{5p}{6}\right) = \frac{1}{3}(27 - 17p)$ $\operatorname{Var}(X) = E(X^2) - (E(X))^2 = \frac{p}{9}(21 - 16p) = \frac{1}{9}(21p - 16p^2)$ for maximum variance $\frac{dV}{dp} = \frac{1}{9}(21 - 32p) = 0, \quad p = \frac{21}{32}$

A. B. C. are all t		$ex:=sum(xv \cdot pv)$	$3 - \frac{4 \cdot p}{3}$
Axv	Вру	$ex2:=sum(xv^2\cdot pv)$	$9-\frac{17 \cdot p}{3}$
1	p/2	$vx := ex2 - ex^2$	$7 \cdot p = 16 \cdot p^2$
2	р/З		$\frac{7 \cdot p}{3} \frac{16 \cdot p^2}{9}$
3	1−5*p/6	$\frac{d}{dp}(vx)$	$\frac{7}{3} - \frac{32 \cdot p}{9}$
		$\operatorname{solve}\left(\frac{d}{dp}(\nu x)=0,p\right)$	$p = \frac{21}{32}$

Question 16

Answer C



© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) http://copyright.com.au

Question 17 Answer D

3x - 2y + z = 1

-x + y - z = 2

Allan stated that the general solution could be expressed as x = k, y = 2k-3, z = k-5 for $k \in R$.

Ben stated that the general solution could be expressed as

 $x = \frac{k+3}{2}, y = k, z = \frac{k-7}{2}$ for $k \in R$.

Colin stated that the general solution could be expressed as x = k+5, y = 2k+7, z = k for $k \in R$.

All of Allan, Ben and Colin are correct.

 $eq1:=3 \cdot x - 2 \cdot y + z = 1$ eq2:=-x + y - z = 2 $solve(eq1 \text{ and } eq2, \{y,z\})|x=k$ $y=2 \cdot k - 3 \text{ and } z=k - 5$ $solve(eq1 \text{ and } eq2, \{x,z\})|y=k$ $x=\frac{k+3}{2} \text{ and } z=\frac{k-7}{2}$ $solve(eq1 \text{ and } eq2, \{x,y\})|z=k$ $x=k+5 \text{ and } y=2 \cdot k+7$

Question 18

Answer D

Newton's method will succeed if the gradient is defined and non-zero at x_0 . Only **D**. has $f'(x_0) \neq 0$ $f(x) = \sqrt{3x^2 - 7x + 2}, \quad f'(2)$ is not defined $f(x) = 3x^3 - 13x^2 + 16x - 4$, f'(2) = 0 $f(x) = (3x-1)\log_e(x-2), f'(2)$ is not defined $f(x) = (3x-1)e^{x-2}, f'(2) \neq 0$ Define $f_c(x) = (3 \cdot x - 1) \cdot \ln(x - 2)$ Done Define $fa(x) = \sqrt{3 \cdot x^2 - 7 \cdot x + 2}$ Done undef $\bigwedge \frac{d}{dx} (fc(x))|x=2$ undef $\frac{d}{dx}(fa(x))|x=2$ Define $fd(x) = (3 \cdot x - 1) \cdot e^{x-2}$ Done Define $fb(x) = 3 \cdot x^3 - 13 \cdot x^2 + 16 \cdot x - 4$ Done $\frac{d}{dx}(fd(x))|x=2$ 8 0 $\frac{d}{dx}(fb(x))|x=2$

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) http://copyright.com.au

iterations	xleft	xmid	xright	f(xleft).f(xmid)
0	2	2.5	3	-1.25
1	2	2.25	2.5	-0.0625
2	2	2.125	2.25	0.4844
3	2.125	2.1875	2.25	0.1041
xleft	xmid	xright	f(xleft)	*f(xmid)
2.0000	2.5000	3.0000	-1.25	00
2.0000	2.2500	2.5000	-0.06	25
2.0000	2.1250	2.2500	0.484	14

2.1250 2.1875 2.2500 0.1041

Question 19

Answer C

Define **bisection**()= Prgm maxiter:=4xleft:=2 xright:=3 Define $f(x) = x^2 - 5$ If f(xleft) f(xright)>0 Then Disp "starting values will not converge" Return EndIf i:=0 Disp "xleft xmid xright f(xleft) f(xmid)" While i<maxiter $xmid:=\frac{xleft+xright}{2}$ Disp xleft, xmid, xright, ", f(xleft) f(xmid) If f(xleft) f(xmid)<0 Then xright:=xmid Else xleft:=xmid EndIf i:=i+1EndWhile

EndPrgm

Question 20 Answer A $\sin^2(x) = \frac{a}{c}, \quad \sin(x) = \sqrt{\frac{a}{c}}, \quad \cos^2(y) = \frac{b}{c}, \quad \cos(y) = \sqrt{\frac{b}{c}}$

since 0 < a < b < c < 1, $\sin(x) > 0$ and $\cos(y) > 0$

$$\log_{2}\left(\sin(x)\cos(y)\right)$$

$$= \log_{2}\left(\sqrt{\frac{a}{c}}\sqrt{\frac{b}{c}}\right) = \log_{2}\left(\frac{\sqrt{ab}}{c}\right) = \log_{2}\left(\sqrt{ab}\right) - \log_{2}(c)$$

$$= \log_{e}\left((ab)^{\frac{1}{2}}\right) - \log_{2}(c) = \frac{1}{2}\left(\log_{2}(ab)\right) - \log_{2}(c)$$

$$= \frac{1}{2}\left(\log_{2}(a) + \log_{2}(b)\right) - \log_{2}(c)$$

END OF SECTION A SUGGESTED ANSWERS

SECTION B

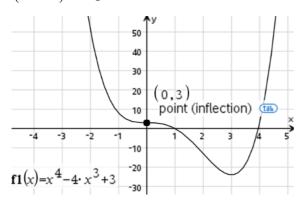
Question 1

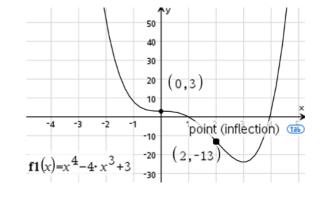
a. $f: R \to R, \quad f(x) = x^4 - 4x^3 + 3$ $m(x) = f'(x) = 4x^2(x-3) = 0$ for turning points $x = 0, \quad x = 3, \quad f(3) = -24$ (3, -24) is an absolute minimum turning point

b. $m'(x) = 12x^2 - 24x$ m'(x) = 12x(x-2) = 0 for inflection points x = 0, 2f(0) = 3, f(2) = -13

(0,3) is a stationary point of inflection

(2, -13) is a point of inflexion





https://kilbaha.com.au

c.

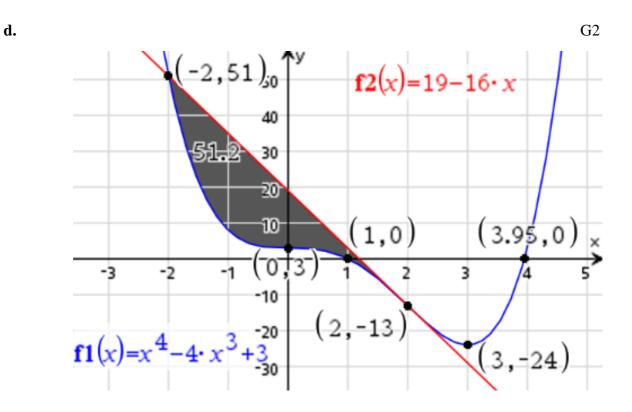
at x=2 f(2) = -13, f'(2) = -16the tangent line at x = 2 is y+13 = -16(x-2) = -16x+32y = g(x) = -16x+19

A1

note the curve crosses the tangent at the point of inflection.

Page 13

A1



e.
$$g(x) - f(x)$$

 $= (-16x + 19) - (x^4 - 4x^3 + 3)$
 $= -x^4 + 4x^3 - 16x + 16$ M1
 $= -(x+2)(x-2)^3 = (x+2)(2-x)^3$
 $g(x) = f(x), \Rightarrow x = \pm 2$
i. the area is $A = \int_{-b}^{b} (g(x) - f(x)) dx$

$$A = \int_{-2}^{2} (x+2)(2-x)^{3} dx$$

b = 2, n = 3 A1

ii.
$$A = \frac{256}{5} = 51\frac{1}{5} = 51.2$$
 A1

f. solving
$$\frac{f(c) - f(1)}{c - 1} = -12$$
, $c > 1$ gives $c = \sqrt{3}$ or $c = 3$ A1

g.
$$h: R \to R$$
, $h(x) = f(x) + k$, need to translate the graph up by 24 or more units,
so that for the graph to not cross the *x*-axis, require $k > 24$ or $k \in (24, \infty)$ A1

Define $f_1(x) = x^4 - 4$.	x ³ +3 Done
factor(f1(x))	$(x-1) \cdot (x^3 - 3 \cdot x^2 - 3 \cdot x - 3)$
solve(f1(x)=0,x)	x=1.00000 or x=3.95137
$\operatorname{solve}\left(\frac{d}{dx}(f1(x))=0,\right)$	x=0 or x=3
<i>f1</i> (3)	-24
<i>f1</i> (2)	-13
tangentLine(f1(x),x)	2) 19–16· <i>x</i>
Define $f^{2}(x) = 19 - 16$	• x Done
solve(f1(x)=f2(x),x)	x=-2 or x=2
f2(x)-f1(x)	$-x^4 + 4 \cdot x^3 - 16 \cdot x + 16$
factor(f2(x)-f1(x))	$-(x-2)^3 \cdot (x+2)$
$\int_{-2}^{2} (-(x-2)^{3} \cdot (x+2))$	51.20000 dx
$\operatorname{solve}\left(\frac{fI(c)-fI(1)}{c-1}=$	$-12,c$ $ c>1$ $c=\sqrt{3}$ or $c=3$

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) http://copyright.com.au

Question 2 $f: R \to R, f(x) = e^{-x^2}$

a.i. $A(a) = 2af(a) = 2ae^{-a^2}$

$$\frac{dA}{da} = (2 - 4a^2)e^{-a^2} = 0 \text{ for maximum area } a = \frac{\sqrt{2}}{2}$$
 M1

ii.
$$A_{\max} = A\left(\frac{\sqrt{2}}{2}\right) = \sqrt{\frac{2}{e}}$$
 A1

iii. the inflexion points are $(\pm 0.7071, 0.6065)$ $a = \frac{\sqrt{2}}{2} \approx 0.7071$ yes Jenny's assertion is correct. A1

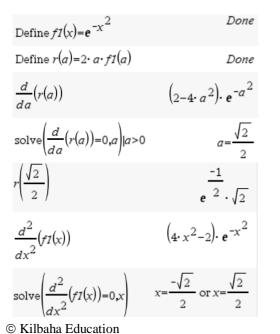
b.i.
$$s(a) = \sqrt{a^2 + (f(a))^2} = \sqrt{a^2 + e^{-2a^2}}$$
$$\frac{ds}{da} = 0 \text{ for minimum area} \quad a = \frac{1}{2}\sqrt{\log_e(4)}$$
A1

ii.
$$s_{\min} = s\left(\frac{1}{2}\sqrt{\log_e(4)}\right) = \frac{1}{2}\sqrt{\log_e(4) + 2}$$
 A1

c.
$$f(x) = e^{-x^2} \rightarrow f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} = \frac{1}{\sigma\sqrt{2\pi}}e^{-\left(\frac{x-\mu}{\sqrt{2\sigma}}\right)^2}$$
 A1

$$x = \frac{x' - \mu}{\sqrt{2}\sigma}, \quad x' = \sqrt{2}\sigma x + \mu, \quad \mu > 0$$
 A2

- dilate by a factor of $\frac{1}{\sigma\sqrt{2\pi}}$ parallel to the y-axis (or away from the x-axis)
- dilate by a factor of $\sqrt{2}\sigma$ parallel to the x-axis (or away from the y-axis)
- translate by a factor of μ to the right parallel to the x-axis (or away from the y-axis)



Define
$$s(a) = \sqrt{a^2 + (fI(a))^2}$$

 $\operatorname{solve}\left(\frac{d}{da}(s(a)) = 0, a\right)|a > 0$
 $s\left(\frac{\sqrt{2} \cdot \ln(2)}{2}\right)$
 $\frac{\sqrt{2} \cdot (\ln(2) + 1)}{2}$

https://kilbaha.com.au

This page must be counted in surveys by Copyright Agency Limited (CAL) <u>http://copyright.com.au</u>

Question 3binomCdf(50,0.46,26,50)0.238643a.i.
$$P \stackrel{d}{=} Bi(n = 50, p = 0.46)$$
binomCdf(50,0.46,26,50)0.238643 $Pr(P > 25)$ $= Pr(26 \le P \le 50) = 0.2386$ A1

ii.
$$E \stackrel{d}{=} Bi(n = ?, p = 0.07)$$

 $Pr(E \ge 2) \ge 0.3$
 $1 - Pr(E \le 1) \le 0.7$
 $1 - (Pr(E = 0) + Pr(E = 1)) \le 0.7$
 $Pr(E = 0) + Pr(E = 1) \ge 0.3$
 $0.93^n + n \times 0.93^{n-1} \times 0.07 \ge 0.3$
 $n = 16$
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $n = 16$
 $solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $n = 16$
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $n = 16$
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $n = 16$
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $n = 16$
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $n = 16$
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $n = 16$
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $n = 16$
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $n = 16$
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $n = 16$
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $n = 16$
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.03)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.93)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.93)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.93)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.93)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.93)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.93)^{n-1} \cdot 0.07 = 0.31, n)$ *
 $Solve((0.93)^n + n \cdot (0.93)^{n-1} \cdot 0.07 = 0.31, n)$ *
 S

b.
$$\Pr(EH | NB) = \frac{\Pr(EH \cap NB)}{\Pr(NB)} = \frac{23}{177}$$

= $\frac{0.23(1-b)}{0.23(1-b)+0.77 \times 0.6} = \frac{23}{177}$ M1
 $b = 0.7, 70\%$ A1

c.i.
$$B \stackrel{d}{=} N(96, 8^2)$$
 time in months
 $Pr(B > 120 | B \ge 108)$ M1
 $Pr(B > 120) \quad 0.00135$ normCdf(120,∞,96,8) 0.0202

$$=\frac{\Pr(B \ge 108)}{\Pr(B \ge 108)} = \frac{0.00185}{0.0668}$$
 normCdf(108, \overline\$, 96, 8)

$$= 0.0202$$

ii.
$$\Pr(B > t) = 0.8$$

 $\frac{t - 96}{8} = 0.8416$
invNorm(0.8,96,8)
12
12

iii.
$$S \stackrel{d}{=} Bi(n = 10, p = 0.0668)$$

 $Pr(S > 2)$
 $= Pr(3 \le S \le 10) = 0.0251$
 $p:=normCdf(108, \infty, 96, 8)$
 $binomCdf(10, p, 3, 10)$
 0.0251
A1

https://kilbaha.com.au

d. White:
$$\hat{p}_W = 0.34$$
, 95%, $z = 1.96$
(1) $CL_W = 0.34 - 1.96 \sqrt{\frac{0.34(1 - 0.34)}{n_W}}$
Black: $\hat{p}_B = 0.21$, 99%, $z = 2.576$
(2) $CU_R = 0.21 + 2.576$, $\sqrt{\frac{0.21(1 - 0.21)}{n_W}}$
A1

$$(L) = C_B = 0.21 + 2.5 + 6\sqrt{n_B}$$
solving $(1) = (2)$ $CL_W = CU_B$ with $n_B = 3n_W$
gives $n_W = 139$

$$295:=invNorm(0.975,0,1)$$
1.9600
$$299:=invNorm(0.995,0,1)$$
2.5758
$$clw:=0.34-z95 \cdot \sqrt{\frac{0.34 \cdot (1-0.34)}{n_W}}$$

$$0.3400-0.9285 \cdot \sqrt{\frac{1}{n_W}}$$
Solve $(clw=clu,nw)$ $nb=3 \cdot nw$ $nw=139.2732$

e.
$$T \stackrel{d}{=} N(\mu = ?, \sigma^2 = ?)$$
 time in years
Pr(T > 7) = 0.86
Pr(T < 7) = 0.14
(1) $\frac{7 - \mu}{\sigma} = -1.0803$
inv Norm(0.14,0,1) -1.0803
inv Norm(0.05,0,1) -1.6449
M1

$$\Pr(T < 5) = 0.05$$
(2) $\frac{5-\mu}{\sigma} = -1.6449$
solve $\left(\frac{7-m}{s} = -1.0803 \text{ and } \frac{5-m}{s} = -1.6449, \{m, p\}$
 $s = 3.5423 \text{ and } m = 10.8268$

$$\mathbf{f.} \qquad f(t) = \begin{cases} b(2t-1) & \text{for } \frac{1}{2} \le t \le 1\\ \frac{b}{\left(t-\frac{1}{2}\right)^2} & \text{for } 1 < t \le 4\\ 0 & \text{elsewhere} \end{cases}$$

solving (1),(2) $\mu = 10.8$, $\sigma = 3.5$

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) http://copyright.com.au

since it is a probability density function $\int_{0.5}^{4} f(t) dt = 1$ solving gives $b = \frac{28}{55}$

$$E(T) = \int_{0.5}^{4} t f(t) dt = 1.5331$$

$$E(T^{2}) = \int_{0.5}^{4} t^{2} f(t) dt = 2.8263$$

$$sd(T) = \sqrt{E(T^{2}) - (E(T))^{2}} = 0.6899$$

$$E(T) + 2sd(T) = 2.9129$$

$$E(T) - 2sd(T) = 0.1533 < 0.5$$

$$Pr(0.5 \le T \le E(T) + 2sd(T))$$

$$= Pr(0.5 \le T \le 2.9129)$$

$$= \int_{0.5}^{2.9129} f(t) dt = 0.9345$$
A1

$$Define f(t) = \begin{cases} b \cdot (2 \cdot t - 1), \frac{1}{2} \le t < 1 & Done \\ \frac{b}{(t - \frac{1}{2})^2}, & 1 \le t \le 4 \\ \frac{b}{(t - \frac{1}{2})^2}, & 1 \le t \le 4 \end{cases} \qquad ex:= \int \frac{4}{12} (t \cdot f(t)) dt \qquad 1.5331$$

$$ex:= \int \frac{4}{12} (t \cdot f(t)) dt \qquad 2.8263$$

$$ex2:= \int \frac{4}{12} (t^2 \cdot f(t)) dt \qquad 2.8263$$

$$Define f(t) = \begin{cases} b \cdot (2 \cdot t - 1), \frac{1}{2} \le t < 1 \\ \frac{b}{\left(t - \frac{1}{2}\right)^2}, & 1 \le t \le 4 \end{cases} |b = \frac{28}{55} \\ Done \end{cases} sdx:= \sqrt{ex2 - ex^2} \\ ex + 2 \cdot sdx \\ ex - 2 \cdot sdx \\ 0.1533 \\ 0.9345 \\ 1 \end{cases}$$

J

2

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) http://copyright.com.au

a.

$$f: [-\pi, \pi] \to R, \quad f(x) = x^2 \cos(x)$$

$$f(-x) = (-x)^2 \cos(-x)$$

$$= x^2 \cos(x) = f(x)$$

A1

so *f* is an even function and the graph of y = f(x) is symmetrical about the *y*-axis.

b.
$$f'(x) = 2x\cos(x) - x^2\sin(x) = x(2\cos(x) - x\sin(x))$$

for non-zero turning points, $a(x) = 2\cos(x) - x\sin(x)$

for non-zero turning points
$$g(x) = 2\cos(x) - x\sin(x) = 0$$

 $g'(x) = -3\sin(x) - x\cos(x), \quad x_0 = 0.75$
 $x_1 = x_0 - \frac{g(x_0)}{g'(x_0)} = 1.117$ M1
 $x_2 = x_1 - \frac{g(x_1)}{g'(x_1)} = 1.077$

<i>X</i> ₀	0.75
<i>x</i> ₁	1.117
<i>x</i> ₂	1.077

Define $fI(x) = x^2 \cdot \cos(x)$	Done	Define $d_2(x) = \frac{d}{d_1(x)}$	Done
Define $m(x) = \frac{d}{dx} (fI(x))$	Done	Define $dg(x) = \frac{d}{dx}(g(x))$	
dx^{\vee}		$\triangle dg(x)$	$-x \cdot \cos(x) - 3 \cdot \sin(x)$
m(x)	$2 \cdot x \cdot \cos(x) - x^2 \cdot \sin(x)$	$\triangle 0.75 - \frac{g(0.75)}{dg(0.75)}$	1.117
Define $g(x) = \frac{m(x)}{x}$	Done	dg(0.75)	
x		(1.117) g(1.117)	1.077
$ \mathbf{g}(\mathbf{x}) $	$2 \cdot \cos(x) - x \cdot \sin(x)$	$\frac{d}{dg(1.117)}$	

c.i.
$$y - a^2 \cos(a) = (2a\cos(a) - a^2\sin(a))(x - a)$$

 $y = (2a\cos(a) - a^2\sin(a))x - a^2(\cos(a) - a\sin(a))$ A1

ii. solving
$$y = 0$$
 when $x = \pi$ and $0 < a < \pi$ gives $a = 1.151$, and A1

$$y = 0.852 - 0.271x$$
 A1

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) http://copyright.com.au https://kilbaha.com.au

A1

$$tangentLine(f1(x),x,a)$$

$$2.000 \cdot a \cdot (\cos(a)-0.500 \cdot a \cdot \sin(a)) \cdot x-a^{2} \cdot (\cos(a)-a \cdot \sin(a))$$

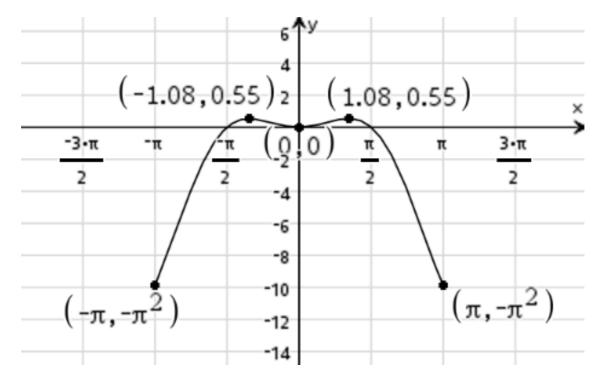
$$solve(a \cdot (2 \cdot \cos(a)-a \cdot \sin(a)) \cdot x-a^{2} \cdot (\cos(a)-a \cdot \sin(a))=0,a)|x=?$$

$$(a-2 \cdot \pi) \cdot \cos(a)-a \cdot (a-\pi) \cdot \sin(a)=0 \text{ and } 0 < a < \pi$$

$$a \cdot (2 \cdot \cos(a)-a \cdot \sin(a)) \cdot x-a^{2} \cdot (\cos(a)-a \cdot \sin(a))|a=1.15092840^{\circ}$$

$$0.852-0.271 \cdot x$$

d. endpoints $(\pm \pi, -\pi^2)$ local minimum turning point (0,0)absolute maximum turning points $(\pm 1.08, 0.55)$



e.
$$f$$
 is strictly increasing for $x \in [-3.14, -1.08]$ or $x \in [0, 1.08]$ A1

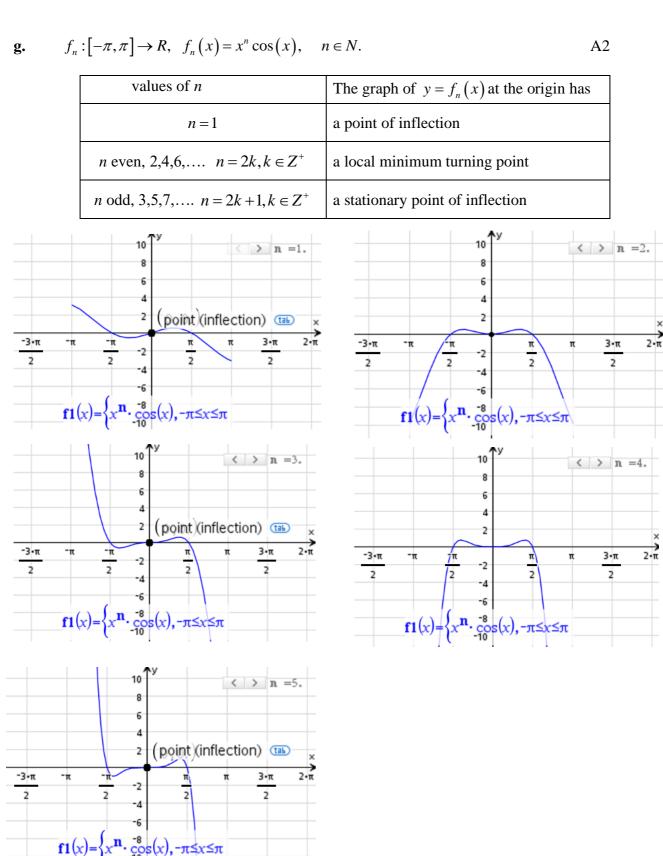
f.
$$\overline{f} = \frac{1}{\pi - (-\pi)} \int_{-\pi}^{\pi} x^2 \cos(x) dx = -2$$

$$\frac{1}{\pi^{--\pi}} \cdot \int_{-\pi}^{\pi} f I(x) \, \mathrm{d}x \qquad -2$$

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) http://copyright.com.au https://kilbaha.com.au

A1

G2



© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) http://copyright.com.au

π≤x≤π

a. $f:\left[\frac{3}{2},\infty\right] \to R$, $f(x) = \sqrt{4x^2 - 9}$ $f: \quad y = \sqrt{4x^2 - 9}$ $f^{-1}: x = \sqrt{4y^2 - 9}, \quad x^2 = 4y^2 - 9, \quad y^2 = \frac{x^2 + 9}{4}$ domain f = range of $f^{-1} = \left[\frac{3}{2},\infty\right]$ domain f^{-1} = range of $f = [0,\infty)$ $f^{-1}:[0,\infty) \to R, \quad f^{-1}(x) = \frac{\sqrt{x^2 + 9}}{2}$ A1

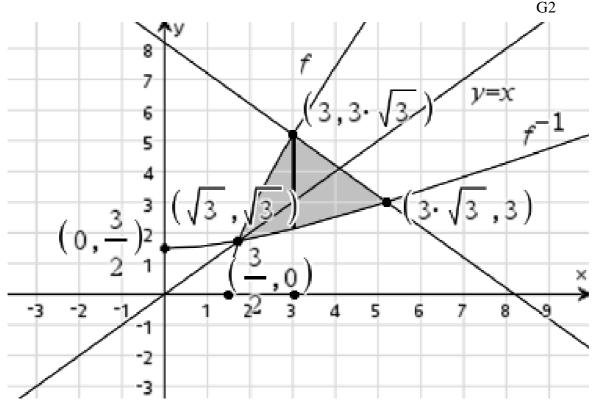
b. solving
$$f(x) = f^{-1}(x) \implies x = \sqrt{3}$$

 $P(\sqrt{3}, \sqrt{3})$

Define
$$fI(x) = \sqrt{4 \cdot x^2 - 9}$$

Define $f2(x) = \frac{\sqrt{x^2 + 9}}{2}$
Define $f2(x) = \frac{\sqrt{x^2 + 9}}{2}$

c.



https://kilbaha.com.au

d.i. The line
$$y = -x + 3(\sqrt{3} + 1)$$
 intersects the graph of $f(x) = \sqrt{4x^2 - 9}$ at the point $(3, 3\sqrt{3})$
and the line $y = -x + 3(\sqrt{3} + 1)$ intersects the graph of $f^{-1}(x) = \frac{\sqrt{x^2 + 9}}{2}$ at the point $(3\sqrt{3}, 3)$.

The area is
$$A = \int_{\sqrt{3}}^{3} (f(x) - f^{-1}(x)) dx + \int_{3}^{3\sqrt{3}} (-x + 3(\sqrt{3} + 1) - f^{-1}(x)) dx$$
 M1

$$A = \int_{\sqrt{3}}^{3} \left(\sqrt{4x^2 - 9} - \frac{\sqrt{x^2 + 9}}{2} \right) dx + \int_{3}^{3\sqrt{3}} \left(-x + 3\left(\sqrt{3} + 1\right) - \frac{\sqrt{x^2 + 9}}{2} \right) dx$$
A1
$$\int_{\sqrt{3}}^{3} \left(fI(x) - f2(x) \right) dx + \int_{3}^{3 \cdot \sqrt{3}} \left(f4(x) - f2(x) \right) dx$$
5.5456

ii.
$$A = 5.546$$

A1

e.
$$f(x) = \sqrt{4x^2 - 9}$$
 $\frac{d}{dx}(fI(x))|x=\sqrt{3}$ 4

$$f'(x) = \frac{4x}{\sqrt{4x^2 - 9}} \qquad \qquad \frac{d}{dx}(f_2(x))|_{x} = \sqrt{3} \qquad \qquad \frac{1}{4}$$

$$f'(\sqrt{3}) = 4 = \tan(\theta_1)$$

$$f^{-1}(x) = \frac{\sqrt{x^2 + 9}}{2}$$

$$\frac{d}{dx}(f^{-1}(x)) = \frac{x}{\sqrt{x^2 + 9}}$$
A1

$$\frac{d}{dx} \left(f^{-1}(x) \right) \Big|_{x=\sqrt{3}} = \frac{1}{4} = \tan(\theta_2)$$

$$\theta_1 - \theta_2 = \tan^{-1}(4) - \tan^{-1}\left(\frac{1}{4}\right) = 61.9^0$$
 A1

© Kilbaha Education This page must be counted in surveys by Copyright Agency Limited (CAL) <u>http://copyright.com.au</u>

2024 Kilbaha VCE Mathematical Methods Trial Examination 2 Detailed answers

f.
$$f(x) = \sqrt{kx^2 - 9}$$
 $x \in \left[\frac{3}{\sqrt{k}}, \infty\right)$
domain $f = \left[\frac{3}{\sqrt{k}}, \infty\right)$ since it is a one-one
increasing function, so $k > 0$.
 $f^{-1}(x) = \sqrt{\frac{x^2 + 9}{k}}$
Define $f(x) = \sqrt{kx^2 - 9}$
Define $g(x) = \sqrt{kx^2 - 9}$
Define $g(x) = \sqrt{kx^2 - 9}$
Define $g(x) = \sqrt{kx^2 - 9}$
 $x = \frac{\sqrt{kx^2 - 9}}{\sqrt{k}}$
Done
Define $g(x) = \sqrt{kx^2 - 9}$
 $x = \frac{\sqrt{kx^2 - 9}}{\sqrt{k}}$
Done
 $x = \frac{\sqrt{kx^2 - 9}}{\sqrt{k}}$
Done
Define $g(x) = \sqrt{kx^2 - 9}$
Done
 $x = \frac{\sqrt{kx^2 - 9}}{\sqrt{k}}$
Done
Define $g(x) = \sqrt{kx^2 - 9}$
Done
Done
 $x = \frac{\sqrt{kx^2 - 9}}{\sqrt{k}}$
Done
Define $g(x) = \sqrt{kx^2 - 9}$
Done
Define $g(x) = \sqrt{kx^2 - 9}$
Done
Define $g(x) = \sqrt{kx^2 - 9}$
Done

The graphs do not intersect when $0 < k \le 1$ or $k \in (0,1]$

$$\begin{aligned} \mathbf{g.} \qquad f(x) = \sqrt{kx^2 - 9}, \quad f'(x) = \frac{kx}{\sqrt{kx^2 - 9}}, \quad f'(c) = \frac{kc}{\sqrt{kc^2 - 9}} = \tan(\theta_1) \\ f^{-1}(x) = \sqrt{\frac{x^2 + 9}{k}}, \quad \frac{d}{dx} (f^{-1}(x)) = \frac{x}{\sqrt{k(x^2 + 9)}}, \quad \frac{d}{dx} (f^{-1}(x)) \Big|_{x=c} = \frac{c}{\sqrt{k(c^2 + 9)}} = \tan(\theta_2) \\ f(c) = f^{-1}(c) & \text{A1} \\ \Rightarrow k = \frac{c^2 + 9}{c^2}, \quad c = \frac{3}{\sqrt{k - 1}} & \tan^{-1}(5) - \tan^{-1}\left(\frac{1}{5}\right) & 67.3801 \\ \theta_1 - \theta_2 = \tan^{-1}\left(\frac{12}{5}\right) = \tan^{-1}(5) - \tan^{-1}\left(\frac{1}{5}\right) & \tan^{-1}(5) - \tan^{-1}\left(\frac{1}{5}\right) & 67.3801 \\ \sin^{-1}\left(\frac{12}{5}\right) & 67.3801 & \tan^{-1}\left(\frac{12}{5}\right) & 67.3801 \\ \sin^{-1}\left(\frac{12}{5}\right) & 67.3801 & \tan^{-1}\left(\frac{12}{5}\right) & 67.3801 \\ eq I:= \frac{c \cdot k}{\sqrt{c^2 \cdot k - 9}} = 5 & \frac{c \cdot k}{\sqrt{c^2 \cdot k - 9}} = 5 \\ \text{with } c = \frac{3}{\sqrt{k - 1}} & eq 2:= \frac{c}{\sqrt{(c^2 + 9) \cdot k}} = \frac{1}{5} & \frac{c}{\sqrt{(c^2 + 9) \cdot k}} = \frac{1}{5} \\ eq 2:= \frac{c}{\sqrt{(c^2 + 9) \cdot k}} = \frac{1}{5} & \frac{c}{\sqrt{(c^2 + 9) \cdot k}} = \frac{1}{5} \\ \mathbf{k} = 5 & \text{solve}(eq I \text{ and } eq 2k)|c = \frac{3}{\sqrt{k - 1}} & k=5 \\ \end{aligned}$$

END OF SECTION B SUGGESTED ANSWERS

End of detailed answers for the 2024 Kilbaha VCE Mathematical Methods Trial Examination 2

Kilbaha Education (Est. 1978) (ABN 47 065 111 373)	PayID: 47065111373
PO Box 3229	Email: kilbaha@gmail.com
Cotham Vic 3101	Tel: (03) 9018 5376
Australia	Web: https://kilbaha.com.au

https://kilbaha.com.au