TSSM Creating VCE Success 2024 Trial Examination	THIS BOX IS FOR ILLUSTRATIVE PURPOSES ONLY	
STUDENT NUMBER	Letter	-

MATHEMATICAL METHODS Units 3 & 4 – Written examination 1

Reading time: 15 minutes Writing time: 1 hour

QUESTION & ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks	
9	9	40	

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.
- No calculator is permitted in this examination.

Materials supplied

• Question and answer book of 12 pages.

Instructions

- Print your name in the space provided on the top of this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the examination room.

This page is blank

Instructions

Answer **all** questions in the spaces provided.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1 (4 marks)

a. If $y = x^2 e^{4x}$, find $\frac{dy}{dx}$.

1 mark

b. Let $f(x) = \frac{\sin(x)}{x^2 + e^x}$. Find f'(0)

3 marks

Question 2 (5 marks)

Consider $f: R \setminus \{-1\} \rightarrow R, f(x) = \frac{3x+2}{x+1}$

a. Write f(x) in the form $f(x) = a + \frac{b}{x+1}$ where $a, b \in Z$.

1 mark

b. State a series of transformations that take the graph of $y = \frac{1}{x}$ to the graph of y = f(x). 2 marks

Question 3 (4 marks)

a. Find the general solution to $2 \tan(4x) - 2 = 0$, for $x \in R$

2 marks

b. Hence determine the sum of the first four positive solutions to $2 \tan(4x) - 2 = 0$. 2 marks

Question 4 (3 marks)

Consider the set of simultaneous equations, where m and n are real constants:

$$2x + (m+1)y = 2$$
$$mx + 3y = 3n$$

Find the values of m and n for which the simultaneous equations have no solutions for x and y.

Question 5 (4 marks)

a. Show that
$$\frac{d}{dx}(x^2 \log_e(x)) = 2x \log_e(x) + x$$

1 mark

b. Hence find $\int_{1}^{e} x \log_{e}(x) dx$. Give your answer in the form $\frac{1}{a}(e^{b} + c)$ where $a, b, c \in Z$. 3 marks

Question 6 (4 marks)

Consider the functions g and h where:

$$g: R \to R, g(x) = x^2 + 3$$

 $h: (-\infty, 4] \to R, h(x) = \sqrt{4 - x}$

a. Determine the rule and domain of $g \circ h$

2 marks

b. Let $g^*(x)$ be the function $g: A \to R$, $g(x) = x^2 + 3$. Determine the maximal domain, *A*, such that $h \circ g^*$ exists.

2 marks

Question 7 (4 marks)

Hannah has 4 coins in each of her two pockets. In her left pocket she has three \$1 coins and one \$2 coin. In her right pocket she has two \$1 coins and two \$2 coins.

Hannah chooses a pocket at random and draws out a single coin.

a. What is the probability she draws out a \$2 coin?

2 marks

b. If she has drawn out a \$2 coin, what is the probability that it was drawn from her left pocket?

2 marks

Question 8 (8 marks)

Consider the graph of $y(x) = 5 - 4x^2$

a. Calculate the average value of y(x) between the two x intercepts

2 marks

b. Using the trapezium method, determine an estimate for the area bounded between y(x) and the x axis using four trapeziums.

3 marks

c. Newton's method can be used to determine an estimate for the positive x intercept. Find x_2 using $x_0 = 1$.

3 marks

Question 9 (4 marks)

Consider the cubic $y = \frac{1}{3}mx^3 + 4x^2 + n$, where $m, n \in R$

a. Find the co-ordinates of the point of inflection in terms of *m* and *n*.

2 marks

b. Find the possible values of *m* and *n* such that the point of inflection is in the first quadrant.

2 marks

END OF QUESTION AND ANSWER BOOK