MATHEMATICAL METHODS

Units 3 & 4 – Written examination 2

2024 Trial Examination

SOLUTIONS

SECTION 1: Multiple-choice questions (1 mark each)

Question 1

Answer: D

Explanation:

Period= $\frac{\pi}{3}$, Range= R

Question 2

Answer: C

Explanation:

For a unique solution require $\frac{p}{3} \neq \frac{2}{p-1}$ $p^2 - p - 6 \neq 0$ $(p-3)(p+2) \neq 0$ Hence $p \in R \setminus \{-2,3\}$

Answer: C

Explanation:

$$\int_{b}^{a} f(x) dx = -\left(\int_{a}^{c} f(x) dx - \int_{b}^{c} f(x) dx\right)$$

= -(10 - 2) = -8

Question 4

Answer: C

Explanation:

Two successive stationary points are adjacent local maxima and minima. The horizontal distance is half a period = $\frac{\pi}{b}$, the vertical distance is 2a

Hence distance = $\sqrt{(2a)^2 + \left(\frac{\pi}{b}\right)^2}$

Question 5

Answer: D

Explanation:

 $dom (f + g) = dom(f) \cap dom(g)$ = [-5, \omega) \cap R\{2} = [-5, 2) \cup (2, \omega)

Question 6

Answer: C

Explanation:

The graph is a polynomial of order 4. $\frac{d^2y}{dx^2}$ will be of order 2. This can have up to 2 solutions, hence a maximum of two points of inflection.

Answer: D

Explanation:

$$Pr(a, a) + Pr(b, b) = 1 - Pr(a, b) - Pr(b, a) = 1 - 2Pr(a, b)$$

= 1 - 2 × $\frac{a}{a+b}$ × $\frac{b}{a+b-1}$
= 1 - $\frac{2ab}{(a+b)(a+b-1)}$

Question 8

Answer: B

Explanation:

Look for f(-x) = f(x) $\sin\left(x + \frac{\pi}{2}\right) = \cos(x)$ which is even.

Question 9

Answer: A

Explanation:

Find when gradient of curve is equal to gradient of tangent passing through (0, 0)

$$\frac{ay}{dx} = 2x + 5$$

$$\frac{f(x) - f(0)}{x - 0} = 2x + 5$$

$$x^{2} + 5x + 1 = 2x^{2} + 5x$$

$$x^{2} - 1 = 0$$

$$x = \pm 1$$

Check which passes through *y*, not just parallel.

At x = 1, $y_T = 7x$ (1,7) At x = -1 $y_T = 3x$ (-1,-3) y(1) = 7y(-1) = -3Hence at both $x = \pm 1$

Question 10

Answer: A

Explanation:

Use CAS binomialCDf (60, 80, 80, 0.7) / binomialCDf (50, 80, 80, 0.7) 0.2101951456

Question 11

Answer: D

Explanation:

$$\int_{0}^{5} kx^{2} + 3 \, dx = 1$$
$$k = -\frac{42}{125}$$

Question 12

Answer: B

Explanation:

 $a + a^{2} + 2a + 0.4 - a^{2} = 1$ a = 0.2 $E(X) = (0 \times 0.2) + (1 \times 0.04) + (2 \times 0.4) + (3 \times 0.36)$ = 1.92

Answer: A

Explanation:

$$\sqrt{\frac{0.65 \times 0.35}{n}} = 0.1$$

$$n = \frac{91}{4}, \quad so \ n = 23$$

Question 14

Answer: D

Explanation:

Look for graph that is a reflection through the line y = x.

Question 15

Answer: A

Explanation:

$$\frac{y(4) - y(0)}{4 - 0} = 30$$

Question 16

Answer: D

Explanation:

$$\frac{1}{5-1} \int_{1}^{5} x + \sqrt{x} \, dx = \frac{5\sqrt{5} + 17}{6}$$

Answer: C

Explanation:

 $(2)^3 - 27 = b(2)^2 - 15(2) - 1$ b = 3

Question 18

Answer: A

Explanation:

As
$$x \to 0$$
, $f(x) \to \infty$
As $x \to n$, $f(x) = \frac{m}{\sqrt{n^2}} = \frac{m}{n}$
Hence $\left[\frac{m}{n}, \infty\right)$

Question 19

Answer: D

Explanation:

n	x	f(x)	df(x)
0	5	-13	2
1	11.5	42.25	15
2	8.683333	7.933611	9.366667
3	7.836329	0.717417	7.672657
4	7.742826	0.008743	7.485651
5	7.741658	1.36E-06	7.483315

Answer: B

Explanation:

f(x) = (x + 1)(x - 1)(x - 2)So area between x = -1 and x = 1 and area between x = 1 and x = 2

$$\frac{1--1}{2\times 4}\left(f(-1)+2f\left(-\frac{1}{2}\right)+2f(0)+2f\left(\frac{1}{2}\right)+f(1)\right)=\frac{5}{2}$$

$$-\left(\frac{2-1}{2\times 2}\left(f(1)+2f\left(\frac{3}{2}\right)+f(2)\right)\right) = \frac{5}{16}$$
Area = $\frac{5}{2} + \frac{5}{16} = \frac{45}{16}$

$$\int_{-1}^{1} f(x) \, dx - \int_{1}^{2} f(x) \, dx = \frac{37}{12}$$
45

$$\frac{\frac{45}{16}}{\frac{37}{12}} \times 100 = 91.22\%$$

SECTION 2: Extended response questions

Question 1 (13 marks)

a.
$$f'(x) = x^3 e^{-x} (4 - x)$$
 or equivalent

b.
$$f'(x) = 0$$
 at $x = 0, 4$

 $f(0) = 0, f(4) = 256e^{-4}$ (0,0) is a local minimum (4, 256 e^{-4}) is a local maximum

2 marks

1 mark

c.
$$f''(x) = x^2(x-2)(x-6)e^{-x}$$
 or equivalent

Hence points of inflection at x = 2 and x = 6(2, $16e^{-2}$) and (6, $1296e^{-6}$)

 $\mathbf{d} = f'(\alpha) < 0 \text{ for } \alpha \in (-\infty, 0) \cup (-\infty, 0)$

d.
$$f'(x) < 0$$
 for $x \in (-\infty, 0) \cup (4, \infty)$

e. Maximum at $(4, 256e^{-4})$

Hence
$$c < -256e^{-4}$$
 or $c = 0$

f.
$$y_T = 27e^{-3}x$$

1 mark

1 mark

2 marks

g.
$$\int_0^3 27e^{-3}x - f(x) dx$$

= 1.615

2 marks

h. Distance $D(x) = 27e^{-3}x - f(x)$

 $\frac{dD}{dx} = 0 \text{ at } x = 1.13374 \text{ and } x = 3$ $y_T(1.13374) = 1.524$ So at (1.13, 1.52)

Question 2 (10 marks)

a. V = 2x(h - 2x)(2h - x) or equivalent

b.
$$x \in \left(0, \frac{h}{2}\right)$$
 2 marks

c.
$$V(x) = 4h^2x - 10hx^2 + 4x^3$$

 $\frac{dV}{dx} = 12x^2 - 20hx + 4h^2$

1 mark

2 marks

d.
$$12x^2 - 20hx + 4h^2 = 0$$

 $3x^2 - 5hx + h^2 = 0$
 $x = \frac{5h \pm \sqrt{25h^2 - 12h^2}}{6} = \frac{h(5 \pm \sqrt{13})}{6}$
Hence $x = \frac{h}{6}(5 - \sqrt{13})$
 $V\left(\frac{h}{6}(5 - \sqrt{13})\right) = \frac{h^3}{27}(13\sqrt{13} - 35)cm^3$
With dimensions $\frac{h}{3}(\sqrt{13} - 2) cm, \frac{h}{3}(\sqrt{13} + 7) cm and \frac{h}{6}(5 - \sqrt{13}) cm$

3 marks

© TSSM 2024

Question 3 (16 marks)

a.
$$a = \frac{1}{3}, b = 5$$
 2 marks

b.
$$g'(x) = \frac{10}{3}x - x^2$$

1 mark
c. $g'(x) = 0$ at $x = 0$ and $x = \frac{10}{3}$

So
$$x \in (-\infty, 0] \cup \left[\frac{10}{3}, \infty\right)$$
 2 marks

d.
$$Area = \frac{5-0}{2\times 5} (g(0) + 2g(1) + 2g(2) + 2g(3) + 2g(4) + g(5))$$

 $= \frac{50}{3}$

2	marl	ks

e.
$$\int_0^5 g(x) \, dx = \frac{625}{36}$$

2 marks

f. Maximum occurs at $\left(\frac{10}{3}, \frac{500}{81}\right)$

$$4m(n-4) = \frac{50}{9} \text{ and } \frac{10}{3}m\left(n-\frac{10}{3}\right) = \frac{500}{81}$$
$$m = \frac{25}{36}, n = 6$$

g.
$$\int_0^{\frac{10}{3}} \frac{1}{3} x^2 (5-x) dx + \int_{\frac{10}{3}}^{\frac{6}{3}} \frac{25}{36} x (6-x) dx$$

= $\frac{15100}{729} \approx 20.7$

2 marks

h.
$$h'(x) = \frac{h(6) - h\left(\frac{10}{3}\right)}{6 - \frac{10}{3}}$$

 $x = \frac{14}{3}, \ h\left(\frac{14}{3}\right) = \frac{350}{81}$
 $\left(\frac{14}{3}, \frac{350}{81}\right)$

3 marks

Question 4 (21 marks)

a. Pr(X < 2.9) = 0.015 Pr(X > 5) = 0.091

$$\Pr\left(Z < \frac{2.9 - \mu}{\sigma}\right) = 0.015 \quad \Pr\left(Z > \frac{5 - \mu}{\sigma}\right) = 0.091$$
$$\frac{2.9 - \mu}{\sigma} = -2.1701 \quad \frac{5 - \mu}{\sigma} = 1.3346$$
$$\mu = \$4.20 \text{ and } \sigma = \$0.60$$

b.
$$Pr(X > 3.5) = 0.8783$$

3 marks

1 mark

c.
$$\Pr(X > 3.5 | X < 4.2) = \frac{\Pr(3.5 < X < 4.2)}{0.5}$$

= 0.7567

2 marks

d. Assuming n_1 and n_2 are symmetric about μ : Pr($X < n_1$) = 0.3 and Pr($X > n_2$) = 0.3

 $n_1 = 3.89$ and $n_2 = 4.51$

e. $\Pr(X > 6 | X > 5.5) = \frac{\Pr(X > 6)}{\Pr(X > 5.5)}$

 $\frac{0.0013}{0.0151} = 0.0892 = 9\%$

2 marks

f.	$\Pr(Y)$	>	5.5)	= 0.0151
----	----------	---	------	----------

 $E(Y) = np = 2800 \times 0.0151 = 42.36$

1 mark

g. Can be done by trial and error. p = 0.01513

binomialCDf(100,8231,8231,0.01513)

binomialCDf(100,8230,8230,0.01513)

So minimum number of cards is 8231.

2 marks

h. (0.3965, 0.4835)

There is a 95% confidence that the population proportion of coins that are gold lies between 0.3965 and 0.4835.

0.9900206068

0.9899828285

2 marks

i. For 95% k = 1.95996, for 99% k = 2.5758 $\frac{2.5758}{1.95996} = 1.31$

The interval would increase by a factor of 1.31

$$\mathbf{j.} \quad \int_0^\infty k v^3 e^{-v} dv = 1$$

$$k = \frac{1}{6}$$

2 marks

$$\mathbf{k.} \quad \int_0^\infty k v^4 e^{-v} dv \\ = 4$$