

		SUPERV				
 1		1	1			

Write your student number in the boxes above.

Letter

Mathematical Methods Examination 1

Question and Answer Book

VCE (NHT) Examination – Tuesday 28 May 2024

• Reading time is 15 minutes: 10.30 am to 10.45 am

• Writing time is 1 hour: 10.45 am to 11.45 am

Materials supplied

- Question and Answer Book of 12 pages
- Formula Sheet

Instructions

Students are **not** permitted to bring any technology (calculators or software) or notes of any kind into the examination room.

Students are **not** permitted to bring mobile phones and/or any unauthorised electronic devices into the examination room.

Contentspages9 questions (40 marks)2-11

Do not write in this area.

Instructions

- Answer all questions in the spaces provided.
- Write your responses in English.
- In all questions where a numerical answer is required, an **exact** value must be given, unless otherwise specified.
- In questions where more than one mark is available, appropriate working **must** be shown.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question	1 (4 mai	rke)
Question	1 (4	+ IIIai	K51

a. Let $y = xe^{x^2 + 1}$.

Find and factorise $\frac{dy}{dx}$.	2 marks

h	Let $f(x)$ –	x^3
D.	Let $f(x) =$	$\log_e(x)$

Evaluate $f'(x)$ at $x = e$.	2 marks

Question 2 (5 marks)

Consider the simultaneous linear equations

$$ax + (2-a)y = 3$$
$$x + ay = \frac{2a+1}{2}$$

where $a \in R$ and $x, y \in R$.

Find the value of a for which there are infinitely many solutions.	3 mark
Find the values of a for which there is a unique solution.	1 mai
Find a value of a such that the lines meet at right angles.	1 mai

Question 3 (5 marks)

Let $f: D \to R$, $f(x) = 3\log_e(2-x)$, where D is the domain for f.

a. State the maximal domain for f(x).

1 mark

- **b.** Sketch the graph of y = f(x), labelling the asymptote with its equation and the axial intercepts with their coordinates.

3 marks

c. Find the values of x for which $0 \le f(x) \le 3$.

1 mark

Question 4 (3 marks)

Let
$$g:\left(\frac{3}{2},\infty\right) \to R$$
, $g(x) = \log_e(2x-3)$ and $h:R\to R$, $h(x)=e^{3x}+2$.

a. Show that $g \circ h$ is defined for all $x \in R$.

2 marks

b. Find the range of $g \circ h$, given the domain of $g \circ h$ is $x \in R$.

1 mark

Question 5 (4 marks)

In a nursery, 90% of the seeds will grow into seedlings. Let \hat{P} be the random variable representing the sample proportion of seeds that will grow into seedlings for samples of size 100.

2 marl
2 mai

Question 6 (4 marks)

Part of the graph of $g(x) = \sin\left(2x - \frac{5\pi}{6}\right) + 2$ is shown below.

a. Using the trapezium rule approximation method and three trapeziums of equal width, estimate the area bounded by the graph of y = g(x), the x-axis and the lines

$$x = \frac{\pi}{6}$$
 and $x = \frac{2\pi}{3}$.

2 marks

b. Let $h: \left[\frac{\pi}{6}, \frac{2\pi}{3}\right] \to R$, h(x) = kg(x), where $k \in R$.

Using calculus, find k, such that h is a probability density function.

2 marks

Question 7 (3 marks)

Let X be a discrete random variable with a probability mass function of $\Pr(X = x) = \frac{2}{3^x}$, where $x \in Z^+$.

a. Find Pr(X=4).

b. Find $Pr(X < 4 | X \ge 2)$.

Question 8 (4 marks)

Let
$$f:\left(-\frac{1}{3},\infty\right) \to R$$
, $f(x) = \frac{1}{\sqrt{3x+1}}$.

a. Find an anti-derivative for f(x).

1 mark

b. The average value of the function, f, over $0 \le x \le m$ is $\frac{1}{3}$. Find the value of m.

3 marks

Do not write in this area.

Question 9 (8 marks)

Let $f: (0, \infty) \to R$, $f(x) = (x - 1)e^{-x}$.

a. Find f'(x).

b. State a sequence of transformations that will map f(x) onto f'(x).

2 marks

1 mark

•_____

•_____

•_____

c. Show that $\frac{d}{dx}(-xe^{-x}) = f(x)$.

1 mark

d. Let y = g(x) be the tangent to y = f(x) at the point (3, f(3)).

Using $\frac{d}{dx}(-xe^{-x}) = f(x)$, or otherwise, determine the area of the region bounded by the lines x = 1, y = g(x) and the graph of y = f(x).

4 marks

Mathematical Methods Examination 1

Formula Sheet

You may keep this Formula Sheet.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}(x^n) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$		
$\frac{d}{dx}\Big((ax+b)^n\Big) =$	$an(ax+b)^{n-1}$	$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$		
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c,$	<i>x</i> > 0	
$\frac{d}{dx}(\sin(ax)) = a$	$\cos(ax)$	$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = -$	$a\sin(ax)$	$\int \cos(ax)dx = \frac{1}{a}\sin(ax)$	ax) + c	
$\frac{d}{dx}(\tan(ax)) = \frac{1}{c}$	$\frac{a}{\cos^2(ax)} = a\sec^2(ax)$			
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$	Newton's method	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	
trapezium rule approximation $\operatorname{Area} \approx \frac{x_n - x_0}{2n} \Big[f(x_0) + \frac{x_0}{2n} \Big] = \frac{1}{2n} \left[f(x_0) + \frac{x_0}{2n} \Big] =$		$+2f(x_1) + 2f(x_2) + \dots$	$+2f(x_{n-2}) + 2f(x_{n-1}) + f(x_n)$	

Probability

Pr(A) = 1 - Pr(A')		$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$	
$Pr(A B) = \frac{Pr(A \cap B)}{Pr(B)}$			
mean	$\mu = E(X)$	variance	$var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$
binomial coefficient	$\binom{n}{x} = \frac{n!}{x!(n-x)!}$		

Probability distribution		Mean	Variance
discrete	$\Pr(X=x) = p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
binomial	$\Pr(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$	$\mu = np$	$\sigma^2 = np(1-p)$
continuous	$\Pr\left(a < X < b\right) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p}+z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

